Search Results
You are looking at 11 - 20 of 148 items for
- Author or Editor: A. Souza x
- Refine by Access: All Content x
Abstract
The coke removal of HZSM-12 zeolite deactivated in the reaction of n-heptane cracking was studied by thermogravimetry using two multiple heating rate integral kinetics models proposed by Ozawa-Flynn-Wall and Vyazovkin to obtain the activation energy of process of thermoxidation of coke. The results obtained by both models presented excellent accordance with the related literature.
Abstract
The study of the incorporation of rare earth elements as additives in Y zeolites is a very interesting field of research, mainly by its potential application as additives in catalytic cracking process. In this work was studied the thermal and structural properties of cerium, holmium and samarium supported on HZSM-12 zeolite. The obtained materials were characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), nitrogen adsorption, thermogravimetry (TG/DTG), differential scanning calorimetry (DSC) and differential thermal analysis (DTA). TG/DSC/DTA analyses showed that the dehydration temperatures of RE/HZSM-12 zeolites (RE=Ce, Ho, Sm) increase in relation to pure HZSM-12. The acid properties were investigated by pyridine thermo desorption via TG. The results showed two events of mass loss attributed to elimination of pyridine adsorbed on the weak+medium acid sites and on the strong acid sites.
Biodiesels from beef tallow/soybean oil/babassu oil blends
Correlation between fluid dynamic properties and TMDSC data
Abstract
Cloud point (CP), cold filter plugging point (CFPP), and pour point (PP) of biodiesel samples obtained from blends containing different amounts of beef tallow, babassu oil, and soybean oil were investigated by the corresponding conventional techniques and by temperature modulated differential scanning calorimetry (TMDSC). The CP and CFPP values correlate well with the crystallization temperature (T onset) obtained from the TMDSC curves, being the highest for the biodiesel sample containing the highest amount of methyl stearate. A correspondence between PP and the peak temperature was also noticed, pointing out that pouring ceases after the crystallization of the heavier fatty acid ester. Among the samples of biodiesel, Bio-3 (highest amount of babassu oil) and Bio-4 (highest amount of soybean oil) showed better cold-flow properties, or in other words, lower values of CP, CFPP, and PP. Independently of the composition, the cold-flow properties of all biodiesel samples meet the requirements from the Brazilian National Agency of Petroleum, Natural Gas, and Biofuels (ANP).
Abstract
Biodiesel can be obtained from various fatty acid sources. Each raw material has a different chemical composition that leads to different properties. Owing to these properties, the mixture of different proportions of raw materials can lead to biodiesels with best features in relation to physicochemical parameters such as viscosity, oxidative stability and flow properties, generating a fuel whose characteristics meet the requirements of the current legislation of the Brazilian National Agency of Petroleum, Natural Gas and Biofuels (ANP). The objective of this study was to determine the physicochemical properties of biodiesel samples produced from mixtures of beef tallow, babassu oil, and soybean oil. The thermo-oxidative stability was evaluated using thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC). The results showed that all samples were in accordance to the ANP specifications. The biodiesel obtained from a mixture containing 50% of babassu oil had lower values of pour point, cold filter plugging point, and freezing point. This biodiesel also showed a higher thermo-oxidative stability in synthetic air and in oxygen atmospheres.
Abstract
The most feasible alternative among fuels derived from biomass seems to be the biodiesel, having the required characteristics for a total or partial substitution of diesel oil. Therefore, the aim of this work is to evaluate the thermal and rheological behavior of the blends of diesel with the methanol biodiesel obtained from soybean oil, using B5, B15 and B25 blends. All thermogravimetric curves exhibited one overlapping mass loss step in the 35–280C temperature range at air atmosphere and one step between 37–265C in nitrogen. The rheological study showed a Newtonian behavior (n=1) for all blends.
Abstract
CaSnO3 was synthesized by the polymeric precursor method, using different precursor salts as (CH3COO)2CaH2O, Ca(NO3)24H2O, CaCl22H2O and CaCO3, leading to different results. Powder precursor was characterized using thermal analysis. Depending on the precursor different thermal behaviors were obtained. Results also indicate the formation of carbonates, confirmed by IR spectra. After calcination and characterization by XRD, the formation of perovskite as single phase was only identified when calcium acetate was used as precursor. For other precursors, tin oxide was observed as secondary phase.
Abstract
The standard molar enthalpy of formation of crystalline di-isobutyldithiocarbamate complexes of P, As, Sb and Bi(III) has been derived by solution calorimetry at 298.15 K. The corresponding standard molar enthalpies of sublimation were estimated by means of differential scanning calorimetry. From the standard molar enthalpies of formation of the gaseous chelates the homolytic and heterolytic mean metal-sulphur bond-dissociation enthalpies were calculated.
Abstract
The thermo-programmed reduction study of Pt/WOx–ZrO2 materials prepared with different tungsten loading were performed by thermogravimetry. The samples were synthesized by impregnation method and calcined at 600, 700 and 800°C. The characterizations of both un-calcined and calcined materials were carried out using different techniques: thermal analysis (TG and DTA), X-ray diffraction (XRD) and thermo-programmed reduction (TPR). TG and DTA analysis of un-calcined were used to determination of calcination temperatures of the samples. XRD diffractograms were useful to help us in the determination of phase presents. TPR profiles showed between three and four events at different temperatures attributed to platinum reduction and the different stages of tungsten specie reduction.