Search Results

You are looking at 11 - 20 of 54 items for

  • Author or Editor: B. Li x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Positron annihilation lifetime spectra and ionic conductivity have been measured for poly(etherurethane)-LiClO4 as a function of temperature. The effects of Li salt on glas transition free volume and ionic conductivity have been discussed. A correlation between fractional free volume and ionic conductivity was first experimentally confirmed by using the free volume theory.

Restricted access

Thermodynamic investigation of several natural polyols (II)

Heat capacities and thermodynamic properties of sorbitol

Journal of Thermal Analysis and Calorimetry
Authors: B. Tong, Z. Tan, Q. Shi, Y. Li, and S. Wang

Abstract  

The low-temperature heat capacity C p,m of sorbitol was precisely measured in the temperature range from 80 to 390 K by means of a small sample automated adiabatic calorimeter. A solid-liquid phase transition was found at T=369.157 K from the experimental C p-T curve. The dependence of heat capacity on the temperature was fitted to the following polynomial equations with least square method. In the temperature range of 80 to 355 K, C p,m/J K−1 mol−1=170.17+157.75x+128.03x 2-146.44x 3-335.66x 4+177.71x 5+306.15x 6, x= [(T/K)−217.5]/137.5. In the temperature range of 375 to 390 K, C p,m/J K−1 mol−1=518.13+3.2819x, x=[(T/K)-382.5]/7.5. The molar enthalpy and entropy of this transition were determined to be 30.35±0.15 kJ mol−1 and 82.22±0.41 J K−1 mol−1 respectively. The thermodynamic functions [H T-H 298.15] and [S T-S 298.15], were derived from the heat capacity data in the temperature range of 80 to 390 K with an interval of 5 K. DSC and TG measurements were performed to study the thermostability of the compound. The results were in agreement with those obtained from heat capacity measurements.

Restricted access

Abstract  

The title compound 3,3-dinitroazetidinium (DNAZ) 3,5-dinitrosalicylate (3,5-DNSA) was prepared and the crystal structure has been determined by a four-circle X-ray diffractometer. The thermal behavior of the title compound was studied under a non-isothermal condition by DSC and TG/DTG techniques. The kinetic parameters were obtained from analysis of the TG curves by Kissinger method, Ozawa method, the differential method and the integral method. The kinetic model function in differential form and the value of E a and A of the decomposition reaction of the title compound are f(α)=4α3/4, 130.83 kJ mol−1 and 1013.80s−1, respectively. The critical temperature of thermal explosion of the title compound is 147.55 °C. The values of ΔS , ΔH and ΔG of this reaction are −1.35 J mol−1 K−1, 122.42 and 122.97 kJ mol−1, respectively. The specific heat capacity of the title compound was determined with a continuous C p mode of mircocalorimeter. Using the relationship between C p and T and the thermal decomposition parameters, the time of the thermal decomposition from initiation to thermal explosion (adiabatic time-to-explosion) was obtained.

Restricted access

Summary  

Cyanocobalamin (CNCbl), a kind of vitamin B12 (cobalamin, Cbl), which has a special binding capability to rapid dividing cells and proliferating tissue, especially tumors, has been modified and labeled by 99mTc. The optimal labeling condition was determined, and the biodistribution of 99mTc-DTPA-b-CNCbl both in normal mice and TA2 mice bearing MA891 mammary tumors were studied. 99mTc-DTPA-b-CNCbl showed low uptake and rapid clearance in nontarget tissues, and renal excretion. About 40% of uptake at 1 hour remained in the tumor at 12 hours p.i. The satisfying ratio of T/NT was acquired at 6 hours p.i.

Restricted access

High ozone (O3) can cause great damage to plants. However, the effect of high O3 on nitrogen (N) absorption, distribution, and utilization in rice at different growth stages under different planting densities is poorly understood. In the present study, a conventional cultivar (Yangdao 6) and a hybrid cultivar (II You 084) with different planting densities were exposed to an elevated amount of O3 (E-O3; 50% higher than that of the control, C-O3) under a freeair gas concentration enrichment (FACE) system. N absorption, distribution, and utilization of the green leaves, stems, and shoots at tillering, jointing heading, and maturity were investigated. Results showed that E-O3 significantly increased the N content in the shoots of Yangdao 6 by 7.5%, 12.7%, and 19.6%, respectively, at jointing, heading, and maturity. Also, the N content in the shoots of II You 084 increased by 5.4%, 6.5%, and 8.4% at the corresponding growth stage upon E-O3 application. E-O3 significantly decreased N accumulation of II You 084 by 8.3%, 4.9%, 4.7%, and 19.2%, respectively, at tillering, jointing, heading, and maturity. Further, E-O3 had a decreasing effect on the N distribution in green leaves (p ≤ 0.05) of both cultivars, but exerted an increasing effect on that in the stems of both cultivars (p ≤ 0.05). In addition, E-O3 significantly decreased the N use efficiency (NUE) for biomass of the two cultivars in all growth stages. These results revealed that E-O3 could increase the N content in rice plants but decrease the N accumulation and utilization in both cultivars. The effects of E-O3 on N absorption, distribution, and utilization were not affected by planting density.

Restricted access

Abstract  

In the present study, the characteric-structure relationship of epoxidized soybean oils (ESO) with various degrees of epoxidation has been investigated. FTIR analysis was used to identify the relative extent of epoxidation of the samples during the epoxidation reaction. The viscosities of ESO were much higher than that of the raw oil, viscosity increased with degree of epoxidation. The viscous-flow activation energy of ESO was determined to be higher than that of the raw oil (20.72 to 77.93% higher). Thermogravimetry analysis (TG) of ESO was used to investigate the thermodynamic behavior of the samples. With increasing degree of epoxidation, the thermal stability of the samples initially decreased, then increased at the final reacting stage. Differential scanning calorimeter (DSC) indicated that the melting point of ESO was higher than that of soybean oil. Gel permeation chromatography (GPC) indicated the molecular mass of the samples increased initially, then decreased, with an increase in the extent of epoxidation.

Restricted access

Purple pericarp is an interesting and useful trait in Triticum aestivum, but the molecular mechanism behind this phenotype remains unclear. The allelic variation in the MYB transcriptors is associated with the phenotype of pigmented organs in many plants. In this study, a MYB transcription factor gene, TaMYB3, was isolated using homology-based cloning and a differentially expressed gene mining approach, to verify the function of the MYB transcriptor in the purple pericarp. The coding sequence of TaMYB3 in cultivar Gy115 was the same as that in cultivar Opata. TaMYB3 was localized to FL0.62–0.95 on chromosome 4BL. The TaMYB3 protein contains DNA-binding and transcription-activation domains, and clustered on a phylogenetic tree with the MYB proteins that regulates anthocyanin and proanthocyanin biosynthesis. TaMYB3 localized in the nuclei of Arabidopsis thaliana and wheat protoplasts after it was transiently expressed with PEG transformation. TaMYB3 induced anthocyanin synthesis in the pericarp cells of Opata in the dark in collaboration with the basic helix–loop–helix protein ZmR, which is also the function of ZmC1. However, TaMYB3 alone did not induce anthocyanin biosynthesis in the pericarp cells of the white grain wheat cultivar Opata in the light after bombardment, whereas the single protein ZmR did. Light increased the expression of TaMYB3 in the pericarp of Gy115 and Opata, but only induced anthocyanin biosynthesis in the grains of Gy115. Our results extend our understanding of the molecular mechanism of the purple pericarp trait in T. aestivum.

Restricted access

The use of polypropylene materials in industry for food packaging is increasing. The presence of additives in the polymer matrix enables the modification or improvement of the properties and performance of the polymer, but these additives are potential risk for human health. In this context, an efficient analytical method for the quantitative determination of three antioxidants (2,6-di-tert-butyl-4-methylphenol (BHT), dibutylhydroxyphenylpropionic acid stearyl ester (Irganox 1076), and tns-(2.4-di-tert-butyl)-phosphite (Irgafos 168)) and five ultraviolet stabilizers (2-(2′-hydroxy-5′-methylphenyl) (UV-P), (2′-hydroxy-3′-tert-5′-methylphenyl)-5-chloroben zotriazole (UV-326), 2-(2′-hydroxy-3′,5′-di-tert-butylphenyl)-5-chlorobenzotriazole (UV-327), 2-(2H-benzotriazol- 2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol(UV-329), and 2-hydroxy-4(octyloxy) benzophenone (UV-531)) in polypropylene food packaging and food simulants by high-performance liquid chromatography (HPLC) has been developed. Parameters affecting the efficiency in the process such as extraction and chromatographic condition were studied in order to determine operating conditions. The analytical method showed good linearity, presenting correlation coefficients (R ≥ 0.9977) for all additives. The limits of detection and quantification were between 0.03 and 0.30 μg mL−1 and between 0.10 and 1.00 μg mL−1 for eight analytes, respectively. Average spiked recoveries in blank polypropylene packaging and food simulants were in the range of 80.4–99.5% and 75.2–106.7%, with relative standard deviations in the range of 0.9–9.1% and 0.2–9.8%. Dissolving the polypropylene food packaging with toluene and precipitating by methanol was demonstrated more effective than ultrasonic extract with acetonitrile or dichloromethane for extracting the additives. The method was successfully applied to commercial polypropylene packaging determination, Irgafos 168 and UV-P were frequently found in six commercial polypropylene films, and the content ranged from 166.47 ± 5.11 to 845.27 ± 29.31 μg g−1 and 2.10 ± 0.29 to 19.23 ± 1.26 μg g−1, respectively.

Open access