Search Results

You are looking at 11 - 20 of 23 items for

  • Author or Editor: C. Thomas x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Three different methods for determining the long-lived radionuclide contents of highly neutron activated metal wastes are being compared and assessed using samples of pressurized-water reactor (PWR) and boiling-water reactor (BWR) spent fuel disassembly hardware and control rods. These methods include: 1) empirical analyses involving sampling and laboratory measurements; 2) direct assay techniques; 3) calculation methods. These techniques are discussed and the results of the comparisons made to date are presented. The agreement between empirical versus calculational methods for the disassembly hardware was generally within 10% to 50%, and rarely exceeded a factor of 2.5, especially near the fueled region of the reactor core. However, large discrepancies between the measured versus calculated concentrations were observed for59Ni and63Ni at the end fittings of the fuel assembly hardware, where the calculations underestimated the concentrations by factors varying from about 8 to 28. The calculation errors are believed to be due to inadequate cross section data for the nickel isotopes.

Restricted access

Abstract  

NiMoO4 obtained by calcination of precursors has been shown to be a very effective catalyst for oxidative dehydrogenation of propane into propene. Preparation conditions and thermal decomposition of two precursors have been studied by TG-DTA, HTXRD, FFT-IR, and thermo-desorption coupled to mass spectroscopy in order to determine their composition and to define the best treatment to favour the oxidative dehydrogenation process. The selectivity and activity for propane transformation into propene are very different depending on the nature of the precursor and of the active phases obtained after thermal activation. The more selective high-temperature β phase of NiMoO4 has been obtained at a lower temperature (500°C) than previously reported (700°C).

Restricted access

Summary

Galantamine hydrobromide was subjected to oxidative stress degradation using hydrogen peroxide and analyzed as per the chromatographic conditions described in European Pharmacopoeia. The drug showed considerable degradation at ambient temperature resulting in the formation of two degradation products at relative retention times (RRTs) 0.63 and 2.52. The minor degradant at RRT 0.63 was identified as galantamine N-oxide. The principal degradant formed at RRT 2.52 was found to be unknown and has not been reported previously. The unknown impurity was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by isolation using semi-preparative high-performance liquid chromatography (HPLC). The isolated impurity was characterized using one-dimensional, two-dimensional nuclear magnetic resonance spectroscopy (1D and 2D NMR) and elemental analysis (EA). The principal degradant was found to be formed due to the generation of bromine and subsequent attack on the aromatic ring via in situ reaction between hydrogen bromide and hydrogen peroxide. The unknown impurity was characterized as (4aS,6R,8aS)-5,6,9,10,11,12-hexahydro-1-bromo-3-methoxy-11-methyl-4aH-[1]benzofuro [3a,3,2-ef] [2] benzazepin-6-ol.

Full access

Abstract  

Hydrogen surface contamination and depth profiles can be measured by the resonant nuclear reactions1H(19F, )16O and1H(15N, )12C. The method was applied to study hydrogen-implanted silicon, amorphous silicon layers and silicon oxide films produced by anodic oxidation.

Restricted access

Abstract  

Fluorine surface contamination and depth profiles were studied using the19F(p, p')19F resonance reaction. Fluorine implanted silicon samples as well as ZrNb plates and Cr–Al layers after a HF-treatment have been examined. The resonance strengths of the narrow 1088 keV resonance were estimated.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: D. Robertson, V. Thomas, H. Rieck, D. Haggard, W. Reece, J. Pappin, W. Hensley, D. Brown, C. Thomas, and P. Robinson

Abstract  

Battelle, Pacific Northwest Laboratories has recently developed, tested and field-demonstrated a technology for the direct assay of transuranic radionuclides (TRU), fission products, and activation products in a variety of radwaste packages generated at commercial nuclear power plants. This technology involves non-destructive passive neutron counting for determination of nanocurie/gram quantities of the TRU radionuclides. Direct gamma spectrometry combined with thermoluminescent dosimetry (TLD) and correlation analysis is also utilized to determine the concentrations of the fission and activation products present in the radwaste packages. Employing counting times of 10 to 20 minutes, a complete analysis of all radionuclides specified for assay by the U.S. Nuclear Regulatory Commission (in 10CFR61) prior to shallow-land disposal of commercial radwastes can be measured at concentrations at least tenfold below the least restrictive Class A waste catagory.

Restricted access

Abstract  

An accurate means of determining bone age is a goal for forensic scientists. In this study, thermogravimetric analysis (TGA) has been used to examine pig bone specimens of different post-mortem age. Analysis of bone in both air and nitrogen atmospheres reveals a decrease in total mass loss as the bones age. Two mass loss steps due to the decomposition of the organic bone components were observed and show decreasing trends with age for decomposition in an air atmosphere. In a nitrogen atmosphere the decomposition was observed to be more complex and age dependence of the mass loss for each step was not identified. The TGA data, however, demonstrates the potential of the technique as a means of estimating post-mortem age of forensic bone specimens.

Restricted access

Abstract  

A review is presented summarizing the specific nuclear microanalysis methods applied in our laboratory to study amorphous semiconductor thin films. For backscattering, ∼3 MeV Li ions are applicable when depth resolution and sensitivity are required while up to 8 MeV α-particles allow larger depths to be probed and elemental interferences to be solved. These features are predominant for diffusion studies between metal electrodes and chalcogenide films. On the other hand hydrogen profiling using the1H(1 5N, αψ) resonant nuclear reactions is described and analytical problems associated with its use are discussed. Applications to the elaboration conditions of hydrogenated (a)Si is developed.

Restricted access

Abstract  

The Comprehensive Test Ban Treaty calls for the monitoring of aerosol radionuclides throughout the globe. Pacific Northwest National Laboratory has developed the Radionuclide Aerosol Sampler/Analyzer (RASA) for the Department of Energy to automatically collect and measure radioactive aerosols from the atmosphere. The RASA passes high volumes of air through a 3MTM Substrate Blown Microfiber Media (SBMF) specifically designated as SBMF-40VF. It then automatically moves the filter media in front of a high-purity germanium detector and collects a gamma spectrum. If further analysis on the filter is desired, the filter is sent to a laboratory and radiochemical analysis is performed. This paper discusses the method of dissolution of the SBMF-40VF filter media and the separation of the radioisotopes of interest.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: D. Robertson, A. Schilk, K. Abel, E. Lepel, C. Thomas, S. Pratt, E. Cooper, P. Hartwig, and R. Killey

Abstract  

In order to more accurately predict the rates and mechanisms of radionuclide migration from lowlevel waste disposal facilities via groundwater transport, ongoing studies are being conducted at field sites at Chalk River Laboratories to identify and characterize the chemical speciation of mobile, long-lived radionuclides migrating in groundwaters. Large-volume water sampling techniques are being utilized to separate and concentrate radionuclides into particulate, cationic, anionic, and nonionic chemical forms. Most radionuclides are migrating as soluble, anionic species which appear to be predominately organoradionuclide complexes. Laboratory studies utilizing anion exchange chromatography have separated several anionically complexed radionuclides, e.g.,60Co and106Ru, into a number of specific compounds or groups of compounds. Large-volume ultra-filtration experiments have shown that significant fractions of the radionuclides are being transported in these groundwaters in the form of macromolecules having molecular weights ranging from less than 3,000 to 100,000.

Restricted access