Search Results
You are looking at 11 - 20 of 75 items for
- Author or Editor: D. Wang x
- Refine by Access: All Content x
Summary
Supercritical fluid extraction (SFE) was used to extract shionone from Aster tataricus L. f. The effect of various parameters, i.e., temperature, pressure and sample particle size on yield was investigated with an analytical-scale SFE system to find the optimal conditions. The process was then scaled up by 50 times with a preparative SFE system under the optimized conditions of temperature 40 °C, pressure 30 MPa, and a sample particle size of 40–60 mesh. Then preparative high-speed counter-current chromatography was successfully used for isolation and purification of shionone from the SFE extract with a two-phase solvent system composed of n-hexane-methanol (2:1, volume ratio). The separation produced a total of 75 mg of shionone from 500 mg of the crude extract in one step separation with the purity of 98.7%, respectively, as determined by high-performance liquid chromatography (HPLC) and 92% recovery. The structure of shionone was identified by electrospray ionization-mass spectrometry (ESI-MS), hydrogen-1 nuclear magnetic resonance (1H-NMR), and carbon-13 nuclear magnetic resonance (13C-NMR).
Summary
Rapid high-performance liquid chromatographic methods with evaporative light scattering detection (HPLC-ELSD) and electrospray ionization multistage mass spectrometry (HPLC-ESI-MSn) have been established and validated for simultaneous qualitative and quantitative analysis of eight steroidal saponins in ten batches of Gongxuening capsule (GXN), a widely commercially available traditional Chinese preparation. The optimum chromatographic conditions entailed use of a Kromasil C18 column with acetonitrile-water (30:70 to 62:38, υ/υ) as mobile phase at a flow rate of 1.0 mL min−1. The drift tube temperature of the ELSD was 102°C and the nebulizing gas flow rate was 2.8 L min−1. Separation was successfully achieved within 25 min. LC-ESI-MSn was used for unequivocal identification of the constituents of the samples by comparison with reference compounds. The assay was fully validated for precision, repeatability, accuracy, and stability, then successfully applied to quantification of the eight compounds in samples. The method could be effective for evaluation of the clinical safety and efficacy of GXN.
Summary
The sorption and desorption of radionuclide 90Sr2+were investigated on untreated calcareous soil and two treated soils to remove organic matter and calcium carbonate using batch technique. The experiments were carried out at ambient condition, pH 7.8±0.1 and in the presence of 0.001M NaCl. Effects of fulvic acid and ionic strength on the sorption of 90Sr2+on calcareous soil were also studied. It was found that the sorption isotherms are linear in the strontium concentration range used herein, and the sorption of 90Sr2+on the calcareous soil can be described as a reversible sorption process and the sorption mechanism is mainly ion-exchange. The sorption is dependent on ionic strength, and fulvic acid enhances the sorption of 90Sr2+on calcareous soil. Organic matter present in the calcareous soil is a significant trap of 90Sr2+and is responsible for the sorption.
Abstract
The aim of this study is to investigate the melting/freezing characteristics of paraffin by adding Cu nanoparticles. Cu/paraffin composite phase change materials (PCMs) were prepared by a two-step method. The effects of Cu nanoparticles on the thermal conductivity and the phase change heat transfer of PCMs were investigated by the Hot Disk thermal constants analyzer and infrared monitoring methods, respectively. The maximum thermal conductivity enhancements up to 14.2% in solid state and 18.1% in liquid state are observed at the 2 wt% Cu/paraffin. The photographs of infrared monitoring suggest that the melting and freezing rates of Cu/paraffin are enhanced. For 1 wt% Cu/paraffin, the melting and freezing times can be saved by about 33.3 and 31.6%, respectively. The results provide that adding nanoparticles is an efficient way to enhance the phase change heat transfer of PCMs.
Abstract
Adding a magnetic field gradient to the conventional TG system constructs the magnetic thermogravimetry analysis (TG(M) i.e. Faraday methods) and the magnetic derivative thermogravimetry (DTG(M)) techniques. We used the techniques to study the nanocrystalline processes of the FeCuNbSiB and FeCuNbCoSiB amorphous alloys. Some problems of their applications such as the characteristic temperature T min and T C are also discussed in detail.
Abstract
The combustion behavior of Shuangya Mountain (SYM) coal dust has been investigated by means of TG in this paper. The reaction fraction can be obtained from isothermal TG data. The regressions of g(), an integral function of vs. t for different reaction mechanisms were performed. The mechanism of nucleation and nuclei growth is determined as the controlling step of the coal dust combustion reaction by the correlation coefficient of the regression, and the kinetic equation of the SYM coal dust combustion reaction has been established.
Summary
The effects of bentonite density and fulvic acid on the sorption and diffusion of 90Sr2+in compacted bentonite were investigated by using a capillary method. The experiments were carried out at pH 7.0±0.1 in the presence of 0.01M NaClO4. The results suggest that the sorption and diffusion of 90Sr2+in compacted bentonite decreases with increasing the density of compacted bentonite. The presence of FA enhances the sorption of Sr2+, but reduces the diffusion of Sr2+in compacted bentonite. The porosity of the compacted bentonite plays an important role in the sorption and diffusion behavior of 90Sr2+. Using the calculated effective diffusion coefficients the long-term relative concentration distribution of strontium was evaluated in compacted bentonite.
Wavelets are relatively new mathematical tools that have proven to be quite useful for analyzing time series and spatial data. We provide a basic introduction to wavelet analysis which concentrates on their interpretation in the context of analyzing time series. We illustrate the use of wavelet analysis on time series related to vegetation coverage in the Arctic region.
Abstract
Amphiphilic triblock copolymers, based on hydrophilic poly(ethylene glycol) (PEG) blocks and hydrophobic poly(l,l-lactide) (PLLA) blocks, were used as the matrix material for the preparation of tetracycline-loaded microspheres. The morphology and thermal properties of the biodegradable microspheres were evaluated. SEM showed the predominance of the spherical shape, however, it was possible to distinguish three patterns: rough or smooth surface or uneven collapsed volume. The FTIR analysis indicated good mechanical stability and structural integrity of the PLLA-PEG-PLLA copolymer’s microspheres enclosing tetracycline. By thermal analysis it was possible to see the marginal influence of tetracycline on the glass transition and melting temperatures of the PLLA-PEG-PLLA triblock copolymer, while the results by TG indicated the presence of tetracycline in the inner structure of the microspheres, which thermal decomposition leading to char formation was triggered by the drug’s presence.
Wheat kernel morphology is a very important trait for wheat yield improvement. This is the first report of association analysis of kernel morphology traits in wheat breeding lines. In Qinghai, China, the research described here involved genome-wide association analysis in breeding lines derived from synthetic hexaploid wheat with a mixed linear model to identify the quantitative trait loci (QTLs) related to kernel morphology. The 8033 effective Diversity Array Technology (DArT) markers produced a genetic map of 5901.84 cM with an average density of 1.36 markers/cM. Population structure analysis classified 507 breeding lines into three groups by Bayesian structure analysis using unlinked markers. Linkage disequilibrium decay was observed with a map coverage of 2.78 cM. Marker-trait association analysis showed that 15 DArT markers for kernel morphology were detected, located on nine chromosomes, and explained 2.6%–4.0% of the phenotypic variation of kernel area (KA), kernel width (KW), kernel length (KL) and thousand-kernel weight (TKW). The marker 1139297 was related to both the KL and KA traits. Only six DArT markers were close to known QTLs. The parent SHW-L1 carried eight favored alleles, while other seven favored alleles were derived from elite common wheat cultivars. These QTLs, identified in elite breeding lines, should help us understand the kernel morphology trait better, and to provide germplasm for breeding new wheat cultivars for Qinghai Province or other regions.