Search Results

You are looking at 11 - 15 of 15 items for :

  • Author or Editor: G. Vida x
  • Biology and Life Sciences x
  • Refine by Access: All Content x
Clear All Modify Search

The presence and frequency of the resistance gene complex Lr34/Yr18 was investigated in the wheat breeding programme of the Agricultural Research Institute, Martonvásár, Hungary. A total of 226 wheat cultivars and advanced lines from Hungary and other countries were tested with an STS marker, csLV34 , to understand the distribution of the Lr34/Yr18 resistance gene complex. A 150-bp PCR fragment was amplified in 64 wheat cultivars and lines with the resistance genes Lr34/Yr18 , while a 229-bp fragment was detected in 162 genotypes without Lr34/Yr18 . The genotypes with Lr34/Yr18 accounted for 28.3% of the wheat cultivars and advanced lines tested. Among the 128 varieties and breeding lines of Martonvásár origin tested, 34 carried the Lr34/Yr18 genes, with a frequency of 26.6%. The frequency of these genes was 30.6% in genotypes of other origin. The STS marker csLV34 could be used as an effective tool for the marker-assisted selection of Lr34/Yr18 genes in breeding wheat cultivars with durable rust resistance.

Restricted access

Treatment with various concentrations (0, 5, 15 and 20%) of PEG was used to simulate water stress, followed by inoculation with Drechslera tritici-repentis (DTR) at two different points of time (6 and 72 h after the PEG treatment) in two DTR resistant (M-3 and Mv Magvas) and two sensitive (Bezostaya 1 and Glenlea) wheat varieties. The reduction in biomass production due to the PEG treatments was more pronounced in the shoots than in the roots. While in the case of Bezostaya 1 5% PEG reduced the level of infection, 20% PEG treatment lowered the tolerance level of M-3. DTR infection may be more efficient in inducing antioxidative defence systems than water stress. However, there was no direct correlation between the activity of the individual antioxidant enzymes and the drought or DTR tolerance of wheat plants.

Restricted access

Infection with fungal pathogens on wheat varieties with different levels of resistance was tested at ambient (NC, 390 ppm) and elevated (EC, 750 ppm) atmospheric CO2 levels in the phytotron. EC was found to affect many aspects of the plant-pathogen interaction. Infection with most fungal diseases was usually found to be promoted by elevated CO2 level in susceptible varieties. Powdery mildew, leaf rust and stem rust produced more severe symptoms on plants of susceptible varieties, while resistant varieties were not infected even at EC. The penetration of Fusarium head blight (FHB) into the spike was delayed by EC in Mv Mambo, while it was unaffected in Mv Regiment and stimulated in Mv Emma. EC increased the propagation of FHB in Mv Mambo and Mv Emma. Enhanced resistance to the spread of Fusarium within the plant was only found in Mv Regiment, which has good resistance to penetration but poor resistance to the spread of FHB at NC. FHB infection was more severe at EC in two varieties, while the plants of Mv Regiment, which has the best field resistance at NC, did not exhibit a higher infection level at EC.The above results suggest that breeding for new resistant varieties will remain a useful means of preventing more severe infection in a future with higher atmospheric CO2 levels.

Restricted access
Cereal Research Communications
Authors: L. Błaszczyk, I. Kramer, F. Ordon, J. Chełkowski, M. Tyrka, G. Vida, and I. Karsai

The set of 44 near-isogenic lines of spring wheat cv. Thatcher and wheat genotypes known to carry specific leaf rust resistance genes were included in the present study for the preliminary validation of twelve STS and SCAR markers linked to leaf rust resistance genes Lr9, Lr19, Lr20, Lr21, Lr24, Lr25, Lr26, Lr28, Lr29, Lr37 . Seven Lr genes were specifically tagged by STS and SCAR markers. The presence of genes Lr9, Lr19, Lr20, Lr24, Lr28, Lr29, Lr37 in the tested plant materials was confirmed by a unique amplification of markers SCS5 550 , SCS265 512 and SCS253 736 , STS638, SCS73 719 , SCS421 570 , IPY10 and Lr29F24/R24, cslVrgal3, PS10R/L, respectively. Evaluation of the repeatability and the reliability of selected markers (pTAG621 for Lr1 , STS683 for Lr20 , D14L for Lr21 , Lr25F20/R19 for Lr25 , Lr29F24/R24, IPY10 for Lr29 , cslVrgal3 for Lr37 and PS10R/L for Lr47 ) across four European laboratories and PCR conditions demonstrated the usability of STS638, Lr29F24/R24, IPY10, cslVrgal3 and PS10R/L markers in marker-assisted selection. STS markers pTAG621 for gene Lr1 , D14L for gene Lr21 , Lr25F20/R19 for gene Lr25 were found to be unsuitable for effective screening of large segregating populations in breeding programs.

Restricted access
Acta Agronomica Hungarica
Authors: G. Vida, M. Cséplő, G. Gulyás, I. Karsai, T. Kiss, J. Komáromi, E. László, K. Puskás, Z. Wang, C. Pace, Z. Bedő, L. Láng, and O. Veisz

Among the factors which determine yield reliability an important role is played by disease resistance. One of the breeding aims in the Martonvásár institute is to develop wheat varieties with resistance to major diseases. The winter wheat varieties bred in Martonvásár are examined in artificially inoculated nurseries and greenhouses for resistance to economically important pathogens. The effectiveness of designated genes for resistance to powdery mildew and leaf rust has been monitored over a period of several decades. None of the designated major resistance genes examined in greenhouse tests is able to provide complete resistance to powdery mildew; however, a number of leaf rust resistance genes provide full protection against pathogen attack (Lr9, Lr19, Lr24, Lr25, Lr28 and Lr35). In the course of marker-assisted selection, efficient resistance genes (Lr9, Lr24, Lr25 and Lr29) have been incorporated into Martonvásár wheat varieties. The presence of Lr1, Lr10, Lr26, Lr34 and Lr37 in the Martonvásár gene pool was identified using molecular markers. New sources carrying alien genetic material have been tested for powdery mildew and leaf rust resistance. Valuable Fusarium head blight resistance sources have been identified in populations of old Hungarian wheat varieties. Species causing leaf spots (Pyrenophora tritici-repentis, Septoria tritici and Stagonospora nodorum) have gradually become more frequent over the last two decades. Tests on the resistance of the host plant were begun in Martonvásár four years ago and regular greenhouse tests on seedlings have also been initiated.

Restricted access