Search Results

You are looking at 11 - 20 of 28 items for

  • Author or Editor: H. Du x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The stability constants for tracer concentrations of Co(II) complexes with the red earth fulvic acid were determined at pH 3.8–6.8 and ionic strength 0.0010–1.0 mol/l by using the cation exchange equilibrium method and the radiotracer60Co. The effects of ionic strength and pH on the stability constants of 1∶1 Co(II) complexes were investigated, and it was found that the stability constants of complexes of humic substances do not vary with ionic strength and pH in a manner similar to that of simple complexes.

Restricted access

Abstract  

The stability constants for tracer concentrations of Co(II) complexes with both the red earth humic and fulvic acids were determined at pH 5.9 and ionic strength 0.010 mol/l by using theArdakani-Stevenson cation exchange equilibrium method and the radiotracer60Co. It was found that the 1:1 complexes of Co(II) with the red earth humic and fulvic acids were formed and that the average values of logβ (stability constant) of humic and fulvic acid complexes were 5.76±0.19 and 4.42±0.03, respectively.

Restricted access

Abstract  

A novel double -diketone 1,6-bis(1-phenyl-3-methyl-5-oxo-pyrazol-4-yl) hexanedione-[1,6] (BPMOPH) was further studied on its coordination compounds with uranium and thorium, respectively. The IR, UV, and1H-NMR spectra were examined, and the proposed structure is discussed.

Restricted access

The chemistry of uranium

Part 30. The effect of the cation on the thermal decomposition of hexanitrato uranate (IV)

Journal of Thermal Analysis and Calorimetry
Authors: J. G. H. du Preez, A. Litthauer, and C. P. J. van Vuuren

The thermal decomposition reactions of various hexanitrato uranium(IV) species, M2U(NO3)6 where M=Cs+, NEt4 +, AsPh4 + and PPh4 + have been studied.

Restricted access

In this paper, 633 species (involving 10 classes, 48 families, 205 genera) collected from the alpine meadow on the eastern Qinghai-Tibet plateau were studied. We tested potential factors affecting variation in mean germination time (MGT), i.e., plant traits (adult longevity, dispersal mode and seed size) or phylogeny, to evaluate if these factors were independent or they had interaction. Nested ANOVA showed that taxonomic membership accounted for the majority of MGT variation (70%), and in the generalized linear model, family membership could explain independently the largest proportion of MGT variation (29%). The strong taxonomic effect suggests that MGT variation within taxonomic membership is constrained. The other plant traits could also explain MGT variation independently (1% by adult longevity and dispersal mode, respectively, and 2% by seed size). Thus, the phylogeny was an important constraint to maintain the stability of species, and we could simplify the question if we regarded the phylogeny as an individual factor, but we could not negate the adaptive significance of the relationship between other plant traits and seed MGT. In addition, a large percentage of the variance remained unexplained by our model, thus important selective factors or parameters may have been left out of this analysis. We suggest that other possible correlates may exist between seed germination time and additional ecological factors (for example, altitude, habitat and post-dispersal predation) or phylogenetic related morphological and physiological seed attributes (e.g., endosperm mass) that were not evaluated in this study.

Restricted access

Summary

Cleavage of glucosinolates with myrosinase yields thioglycosidic compounds which have cancer chemoprevention activity. In this paper, glucosinolates in an extract (2.0 g) of broccoli seeds (Brassica oleracea var. italica) were separated by high-speed countercurrent chromatography (HSCCC) with the solvent system n-butanol-acetonitrile-10% ammonium sulfate solution 1:0.5:2.2 (v/v) to yield five glucosinolate compounds after desalting and decolorizing by MCI column chromatography. The five compounds, 7-methylsulfinylheptyl glucosinolate (22.4 mg), 4-pentenyl glucosinolate (33.6 mg), 3-butenyl glucosinolate (24.0 mg), 4-methylsulfinylbutyl glucosinolate (161.4 mg), and 3-methylsulfinylpropyl glucosinolate (29.6 mg), were identified by ESI-MS, 1H NMR and 13C NMR. The purity of the products was >98%, and 7-methylsulfinylheptyl glucosinolate was obtained from broccoli seeds for the first time.

Full access

Abstract  

The sorption/desorption of radioruthenium was investigated by the batch method in sea water system at ambient temperature on the surface sediments obtained around the Daya Bay of Guangdong Province, where the first nuclear power station of China has been running from 1994. It was found that the sorption percentage was obtained to be around 40% for all the surface sediments in 60 minutes. Then, the sorption percentage goes up slowly. The sorption percentage of radioruthenium reached around 80% in 113 days (2713 hours). The distribution coefficients decreased from 3.16·104 to 1.35·103 ml/g with the increasing of sediment concentration in the range of 4–10000 mg/l. The results of the desorption experiments suggest that the sorption of radioruthenium is irreversible with 81.5% relative hysteresis coefficient.

Restricted access

Abstract  

Three kinds of marine bivalves (wild Saccostrea cucullata, aquacultured Perna viridis and aquacultured Pinctada martens), collected from Daya Bay, the South China Sea, were used to investigate the bio-accumulation of radioruthenium in the glass aquarium with natural seawater (pH 8.20, 35‰ salinity, filtered by 0.45 μm) at ambient temperature under laboratory feeding conditions. The experimental results show that the stead-state of biology concentration factor (BCF, ml/g) of radioruthenium was approached around 6 days for most species of bivalves. The values of BCF in shells are the highest in organs all the three bivalves. The orders of BCF values (ml·g−1) are as: Perna viridis (33.2) < Saccostrea cucullata (47.0) < Pinctada martensi (208.4) for shells and Saccostrea cucullata (1.5) < Pinctada martensi (2.2) ≈ Perma viridis (2.4) for soft tissues, respectively, after exposed for 14 days. The rate constants of uptake and elimination of radioruthenium on marine bivalves were also discussed by first-order kinetics model. The Pinctada martensi may be applicable to be an indicator for monitoring radioruthenium among the three bivalves.

Restricted access

Summary

The method of high-performance liquid chromatography (HPLC) with diode array detector (DAD) was used and validated for the simultaneous determination of nine flavonoids (rutin, myricetin, quercitrin, quercetin, luteolin, genistein, kaempferol, apigenin, and isorhamnetin) in beagle dog plasma. Plasma sample was pre-treated with acetonitrile (containing 0.05% formic acid). Chromatographic separation was performed on a kromasil C18 column (250 × 4.6 mm, 5 µm) maintained at 35 °C. The mobile phase was a mixture of methanol and 0.2% formic acid with a step linear gradient. At 1.0 mL min−1 flow rate, the eluent of other eight flavonoids was detected simultaneously at 360 nm with good separation except genistein (detected at 254 nm). Under optimum conditions, the correlation coefficient between the peak area and the concentrations for each analyte was all above 0.999. The intra-day and inter-day precisions were less than 10% for all analytes. The limit of detection and the limit of quantification for the selected nine flavonoids were 0.006–0.03 and 0.02–0.12 g mL−1, respectively. The extracted recoveries of selected nine flavonoids were 74.02%–99.37%. The assay has been successfully applied to determine concentrations of nine flavonoids in plasma from beagle dog after being intravenously administrated Ginkgo biloba extract.

Full access

Summary

An efficient ionic liquid-based microwave-assisted (IL-MAE) method has been developed for extraction of dehydrocavidine from Corydalis saxicola Bunting (C. saxicola) for subsequent rapid analysis by high-performance liquid chromatography (HPLC). The yield of dehydrocavidine reached 9.446 mg g−1 within 10 min under the optimum IL-MAE conditions (1.5 mol L−1 [hmim]Br as extraction solvent, liquid-to-solid ratio 20:1 (mL:g), and extraction temperature 70°C). Compared with conventional procedures, the proposed IL-MAE method has many advantages, for example high extraction yield, short extraction time, low solvent consumption, no use of volatile organic solvents, and no further sample clean-up before HPLC analysis. The method was validated for limit of detection (LOD) and quantification (LOQ), linearity, precision, recovery, and reproducibility. The calibration range was 5.0–200 mg L−1 and the correlation coefficient, r, was 0.9996. The LOD and LOQ were 0.035 and 0.12 mg L−1, respectively. The relative standard deviations of intra-day and inter-day assays were below 2.6% and 6.5%, respectively. Recovery was between 93.8% and 109.3% with RSD values below 5.0%. The method can be used for rapid and effective extraction and analysis of active components from medicinal plants.

Full access