Search Results

You are looking at 11 - 20 of 34 items for

  • Author or Editor: H. M. Liu x
  • Refine by Access: All Content x
Clear All Modify Search

Shenqi Fuzheng Injection (SFI) is a traditional Chinese medicine injection, widely used to enhance immune function of clinical cancer patients undergoing chemotherapy. In this study, a high-performance liquid chromatography-diode array detection-evaporative light scattering detection (HPLC-DAD-ELSD) method was established for quality control of SFI, which could simultaneously semiquantitatively reflect the constituents displayed in the chromatographic profile of SFI. The relative retention time and relative peak areas of the 21 common peaks related to the reference peak were calculated. The validity and advantage of this method were validated by systematically comparing chromatograms of 10 batches of SFI samples with the analytical methods of principal component analysis and angle cosine method recommended by the State Food and Drug Administration of China. Moreover, a total of 21 constituents of SFI were identified or tentatively characterized in the fingerprint via ultrafast liquid chromatography-diode array detection-quadrupole time-of-flight (UFLC-DAD-Q-TOF) tandem mass spectrometry technique on the basis of the retention time, ultraviolet spectra, fragmentation patterns, and reported literatures. All the results proved that the technique was useful in comprehensive quality evaluation of SFI and further study.

Open access

Chronic kidney disease (CKD) affects approximately 10% of the world’s adult population; it is within the top 20 causes of death worldwide, and its impact on patients and their families can be devastating. World Kidney Day and International Women’s Day in 2018 coincide, thus offering an opportunity to reflect on the importance of women’s health and specifically their kidney health, on the community, and the next generations, as well as to strive to be more curious about the unique aspects of kidney disease in women so that we may apply those learnings more broadly. Girls and women, who make up approximately 50% of the world’s population, are important contributors to society and their families. Gender differences continue to exist around the world in access to education, medical care, and participation in clinical studies. Pregnancy is a unique state for women, which not only offers an opportunity for diagnosis of kidney disease, but also states where acute and chronic kidney diseases may manifest, and which may impact future generations with respect to kidney health. There are various autoimmune and other conditions that are more likely to impact women with profound consequences for childbearing, and on the fetus. Women have different complications on dialysis than men and are more likely to be donors than recipients of kidney transplants. In this editorial, we focus on what we do and do not know about women, kidney health, and kidney disease and what we might learn in the future to improve outcomes worldwide.

Restricted access

In this study, we employed electron microscopy to investigate the cytogenetic and embryologic mechanisms of parthenogenesis induced in the 1BL/1RS male sterile lines of wheat. Analysis of the root tips and acid polyacrylamide gel electrophoresis indicated that all of the male sterile lines and their maintainer lines were 1BL/1RS translocation lines, whereas the restorer lines were non-1BL/1RS translocation lines. Furthermore, the chromosomes of 1BL/1RS wheat lines with T. aestivum cytoplasm and Aegilops cytoplasm (include Ae. kotschyi, Ae. ventricosa, Ae. variabilis) paired abnormally at different rates during meiotic metaphase I (MMI). The translocated segment size of the 1RS chromosome and the specific nuclear–alloplasm interaction impaired the pairing of homologous chromosome in the background of the specific Aegilops cytoplasm at MMI. In addition, the frequency of abnormal chromosomal pairing was directly affected by the frequency of haploid production induced by parthenogenesis. The results of this study provide significant insights into the mechanism of parthenogenesis, which is probably due to the abnormal fertilization of synergid cells in alloplasmic 1BL/1RS wheat.

Restricted access
Cereal Research Communications
Authors:
G. Chen
,
M.H. Zhang
,
X.J. Liu
,
J.Y. Fu
,
H.Y. Li
,
M. Hao
,
S.Z. Ning
,
Z.W. Yuan
,
Z.H. Yan
,
B.H. Wu
,
D.C. Liu
, and
L.Q. Zhang

Premature termination codons (PTCs) are an important reason for the silence of highmolecular- weight glutenin subunits in Triticum species. Although the Glu-A1y gene is generally silent in common wheat, we here isolated an expressed Glu-A1y gene containing a PTC, named 1Ay8.3, from Triticum monococcum ssp. monococcum (AmAm, 2n = 2x = 14). Despite the presence of a PTC (TAG) at base pair positions 1879–1881 in the C-terminal coding region, this did not obviously affect 1Ay8.3 expression in seeds. This was demonstrated by the fact that when the PTC TAG of 1Ay8.3 was mutated to the CAG codon, the mutant in Escherichia coli bacterial cells expressed the same subunit as in the seeds. However, in E. coli, 1Ay8.3 containing the PTC expressed a truncated protein with faster electrophoretic mobility than that in seeds, suggesting that PTC translation termination suppression probably occurs in vivo (seeds) but not in vitro (E. coli). This may represent one of only a few reports on the PTC termination suppression phenomenon in genes.

Restricted access

Higher plant population and nitrogen management is an adopted approach for improving crop productivity from limited land resources. Moreover, higher plant density and nitrogen regimes may increase the risk of stalk lodging, which is a consequence of complex interplant competition of individual organs. Here, we aimed to investigate the dynamic change in morphology, chemical compositions and lignin promoting enzymes of the second basal inter-nodes altering lodging risk controlled by planting density and nitrogen levels. A field trial was conducted at the Mengcheng research station (33°9′44″N, 116°32′56″E), Huaibei plain, Anhui province, China. A randomized complete block design was adopted, in which four plant densities, i.e., 180, 240, 300, and 360 × 104 ha−1 and four N levels, i.e., 0, 180, 240, and 300 kg ha−1 were studied. The two popular wheat varieties AnNong0711 and YanNong19 were cultivated. Results revealed that the culm lodging resistance (CLRI) index of the second basal internodes was positively and significantly correlated with light interception, lignin and cellulose content. The lignin and cellulose contents were significantly and positive correlated to light interception. The increased planting density and nitrogen levels declined the lignin and its related enzymes activities. The variety AnNong0711 showed more resistive response to lodging compared to YanNong19. Overall our study found that increased planting densities and nitrogen regimes resulted in poor physical strength and enzymatic activity which enhanced lodging risk in wheat varieties. The current study demonstrated that stem bending strength of the basal internode was significantly positive correlated to grains per spike. The thousand grain weight and grain yield had a positive and significant relationship with stem bending strength of the basal internode. The results suggested that the variety YanNong19 produces higher grain yield (9298 kg ha−1) at density 240 × 104 plants ha−1, and 180 kg ha−1 nitrogen, while AnNong0711 produced higher grain yield (10178.86 kg ha−1) at density 240 × 104 plants ha−1 and with 240 kg ha−1 nitrogen. Moreover, this combination of nitrogen and planting density enhanced the grain yield with better lodging resistance.

Restricted access

Abstract  

The complex of [Tb2(p-ClBA)6(PHEN)2] [(p-ClBA: p-chlorobenzoate and PHEN: 1,10-phenanthroline) was prepared and characterized by elemental analysis and IR spectroscopy. The thermal behavior of [Tb2(p-ClBA)6(PHEN)2] in dynamic nitrogen atmosphere was investigated by TG-DTG, SEM and IR techniques. By the kinetic method of processing thermal analysis data put forward by Malek et al., it is defined that the kinetic model for the first-step thermal decomposition is SB(m,n). The activation energy E and the pre-exponential factor lnA for this step reaction are 164 kJ mol-1 and 32.80, respectively. The lifetime equation at mass loss of 10% was deduced as lnτ=(-33.0569+20512.36/T by isothermal thermogravimetric analysis.

Restricted access

Abstract  

The power vs. time curves of the promoter bacteria of a nutrient drug were determined by using a 2277 Thermal Activity Monitor (Sweden). A new experimental model of bacterial growth were established. The growth rate constant, heat output and optimum concentration of specific promoter bacterial of nutrient drug were calculated.

Restricted access
Cereal Research Communications
Authors:
L. Wei
,
S.G. Bai
,
X.J. Hou
,
J.M. Li
,
B. Zhang
,
W.J. Chen
,
D.C. Liu
,
B.L. Liu
, and
H.G. Zhang

Among 20 awnless Tibetan wheat cultivars analyzed by SDS-PAGE, the migration rate of an HMW-GS in XM001584 and XM001593, named 1BX23*. was shown to be slightly faster than 1Bx6. and slower than Bx7. Its nucleotide sequence was isolated based on homology clones. In a phylogenetic tree of 1Bx genes, 1Bx23* was apparently clustered with 1Bx23. Compared with 1Bx23. eight single nucleotide replacements caused four single amino acid replacements in 1Bx23*. The deletion of “G” at base pair 1463 and insertion of “A” at 1509 bps induced a 42-nucleotide frame shift. “GQRQQAGQWQRPGQ” was replaced by “DKGNRQDNGNDRDK”. The new segment cannot be found in other HMW-GSs, and it is very similar to a segment found in collagen. Moreover, an 18-nucleotide deletion made 1Bx23* six amino acids shorter than 1Bx23. The cultivar XM001593 had 28 chromosomes, which signifies that it was tetraploid wheat, and that the new HMW-GS 1Bx23* cannot be used directly for breeding in common wheat.

Restricted access
Cereal Research Communications
Authors:
Z.L. Li
,
H.Y. Li
,
G. Chen
,
X.J. Liu
,
C.L. Kou
,
S.Z. Ning
,
Z.W. Yuan
,
M. Hao
,
D.C. Liu
, and
L.Q. Zhang

Seven Glu-A1 m allelic variants of the Glu-A1 m x genes in Triticum monococcum ssp. monococcum, designated as 1Ax2.1 a , 1Ax2.1 b , 1Ax2.1 c , 1Ax2.1 d , 1Ax2.1 e , 1Ax2.1 f , and 1Ax2.1 g were characterized. Their authenticity was confirmed by successful expression of the coding regions in E. coli, and except for the 1Ax2.1 a with the presence of internal stop codons at position of 313 aa, all correspond to the subunit in seeds. However, all the active six genes had a same DNA size although their encoding subunits showed different molecular weight. Our study indicated that amino acid residue substitutions rather than previously frequently reported insertions/deletions played an important role on the subunit evolution of these Glu-A1 m x alleles. Since variation in the Glu-A1x locus in common wheat is rare, these novel genes at the Glu-A1 m x can be used as candidate genes for further wheat quality improvement.

Restricted access