Search Results

You are looking at 11 - 12 of 12 items for

  • Author or Editor: J. Sempere x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Traditionally, the kinetic treatment of adiabatic calorimetry data has been based on the results of one or more experiments, but always with the assumption of the kinetic model that the reaction follows to calculate the kinetic parameters. In this paper a method for the determination of the activation energy that uses a set of adiabatic calorimetry data is developed. To check the method, the thermal decompositions of two peroxides were studied.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: R. Nomen, M. Bartra, J. Sempere, E. Serra, J. Sales, and X. Romero

Summary  

Estimation methods developed over years by S. W. Benson and co-workers for calculation the thermodynamic properties of organic compounds in the gas phase are applied to a pharmaceutical real process with all type of non-idealities. The different strategies used to calculate the reaction enthalpy of a chemical process, in the absence of data for complex molecules, using the Benson group additivity method are presented and also compared with the experimental value of reaction enthalpy obtained using reaction calorimetry (Mettler-Toledo, RC1). We demonstrate that there are some strategies that can be followed to obtain a good estimation of the reaction enthalpy in order to begin the safety assessment of a chemical reaction. This work is part of an industrial project [1] in which the main objective was the risk assessment of chemical real and complex processes using the commonly available tools for the SMEs (with limited resources).

Restricted access