Search Results

You are looking at 11 - 20 of 65 items for

  • Author or Editor: J. Xu x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The combustion behavior of Shuangya Mountain (SYM) coal dust has been investigated by means of TG in this paper. The reaction fraction can be obtained from isothermal TG data. The regressions of g(), an integral function of vs. t for different reaction mechanisms were performed. The mechanism of nucleation and nuclei growth is determined as the controlling step of the coal dust combustion reaction by the correlation coefficient of the regression, and the kinetic equation of the SYM coal dust combustion reaction has been established.

Restricted access

Abstract  

A novel method that spent nuclear fuel is converted into nitrates with N2O4, and then nitrates are extracted with TBP in supercritical CO2 (SC-CO2), has been developed for reprocessing of spent nuclear fuel, which has a potential prospect because of its potential to decrease generation of the secondary liquid waste. In this paper, conversion of Nd2O3 with N2O4 into its nitrate under various conditions and extraction of the conversion product with TBP in SC-CO2 were investigated. When temperature was 60–120 °C, the molar ratio of H2O to Nd2O3 was from 1 to 6, and molar ratio of N2O4 to Nd2O3 was above 8, complete conversion of Nd2O3 into its nitrate was achieved. The conversion product was characterized by thermal analysis (TG-DTA), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR) and Raman spectroscopy. Quantitative extraction of the conversion product with TBP in supercritical CO2 was also achieved under experimental conditions.

Restricted access

Abstract  

In our invention, FCC (fluid catalytic cracking) dry gas could be used to react with benzene without any special purification, and more than 90% ethylene was converted to ethylbenzene. The phenomenon of carbon deposition over catalyst surface was obvious and leads to a deactivation of catalyst, so it is important to study the behavior of carbon deposition of catalyst during alkylation of benzene. The influence of several factors such as temperature, reaction time, reactant concentration of the amount and the kinetics of carbon deposition were investigated, during which carbon depositing rate equations were obtained for different reactant.

Restricted access

Abstract  

Supramolecular 2,3- and 2,5-pyridinedicarboxylate (PDC) intercalated ZnAl-layered double hydroxides (2,3- and 2,5-PDC–ZnAl–LDHs) have been prepared by ion exchange method. The structure and composition of the intercalated materials have been studied by X-ray diffraction (XRD) and inductively coupled plasma emission spectroscopy (ICP). The study indicates that the 2,3-PDC and 2,5-PDC anions are accommodated as interdigitated bilayer and monolayer arrangement respectively between the sheets of LDHs. Furthermore, their thermal decomposition processes were studied by the use of in situ high temperature X-ray diffraction (HT-XRD), and the combined technique of thermogravimetry-differential thermal analysis-mass spectrometry (TG-DTA-MS) under N2 atmosphere. Based on the comparison study on the temperatures of both decarboxylation and complete decomposition of interlayer PDC, it can be concluded that 2,5-PDC–ZnAl–LDHs has higher thermal stability than that of 2,3-PDC–ZnAl–LDHs.

Restricted access

Garlic is widely used as food flavouring, and China is the world's largest garlic producer and exporter. To develop a convenient technique for evaluation of garlic cultivars would be worthwhile, and it would have wide application in such a huge market. In this research, 3D front-face fluorescence data of 8 garlic cultivars were recorded, and independent component analysis was used to decompose the overall fluorescence spectra into six independent components. The first, second, and fourth independent components showed a big difference among the cultivars, and the chemical fluorophores behind these three components were specified as protein, vitamin B6, and ATP, respectively, as fluorescent markers for evaluation. The result showed that all 8 cultivars cluster separately. The cultivar “YNQJ” have the highest quality in terms of protein and vitamin B6, “NXYC” and “SDHB” have the highest content of ATP, while “SXXA” is the poorest in terms of protein and ATP, and “HNJZ” has the lowest content of vitamin B6. Therefore, rapid evaluation of garlic cultivars can be accomplished successfully by using only the proportion values of three properly selected fluorescent markers.

Restricted access

Abstract  

Molar heat capacities of acetaminophen were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 80 to 330 K. A solid-solid transition at 149.96 K was found from the C p,m-T curve. The polynomial functions of C p,.m(J K-1 mol-1) vs. T were established on the heat capacity measurements by means of the least square fitting method. Thermal decomposition processes of acetaminophen have been studied by thermogravimetry. And the thermal decomposition kinetics parameters, such as activation energy E, pre-exponential factor A and reaction order n, were calculated by TG-DTG techniques with the Freeman-Carroll method, Kissinger method and Ozawa method. Accordingly the thermal decomposition kinetics equation of acetaminophen is expressed as: dα/dt=2.67107e-89630/RT(1-α)0.23. The process of fusion has been investigated through DSC. The melting point, molar enthalpy and entropy of fusion are to be (441.890.04) K, 26.490.44 kJ mol-1 and 59.801.01 J K-1 mol-1, respectively.

Restricted access

The study investigated the effects of environmental factors (salinity, pH, ions and activation media) on sperm motility (activation rate, duration of quick movement, and lifespan) and fertilization rate of Phascolosoma esculenta. The results showed that spermatozoa in the coelom and nephridium are able to move quickly. The optimal salinity was 14.64 to 43.35 and the optimal pH was 6.46 to 9.53 for sperm activation and motility, whereas the ranges for fertilization were narrower (18.56 to 30.3 for salinity and 6.46 to 8.61 for pH). Of the ions studied, Na+ was indispensable for sperm motility and fertilization, and Ca2+ and Mg2+ were necessary for fertilization. P. esculenta sperm could not fertilize eggs and have short lifespans in 200 to 600 mmol/L NaCl and KCl solutions. Furthermore, they could not be activated or move in 200 to 600 mmol/L CaCl2, MgSO4, and sucrose solutions.

Restricted access

Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Eriks., is a major disease that causes substantial losses to wheat production worldwide. The utilization of effective resistance genes in wheat cultivars is the preferred control of the disease. To study the inheritance of all-stage resistance in spring wheat cultivars Louise, WA008016, Express, Solano, Alturas and Zak from the Pacific Northwest (PNW) of the United States, the six cultivars were crossed with the Chinese susceptible variety Taichung 29. Single-spore isolates of CYR32 and CYR33, the predominant Chinese races of P. striiformis f. sp. tritici, were used to evaluate F1, F2 and BC1 generations for stripe rust resistance under controlled greenhouse conditions. Genetic analysis determined that Louise had one dominant resistance gene to CYR32, temporarily designated as YrLou. WA008016 had two dominant and one recessive resistance genes to CYR32, temporarily designated as YrWA1, YrWA2 and YrWA3, respectively. Express had a single recessive gene that conferred resistance to CYR32, temporarily designated as YrExp3. The two independent dominant genes in Solano conferring resistance to CYR32 were temporarily designated as YrSol1 and YrSol2. Alturas had two recessive genes for resistance to CYR32, temporarily designated as YrAlt1 and YrAlt2. Zak has one dominant gene for resistance to CYR33, temporarily designated as YrZak1. These six cultivars can be important resistance sources in Chinese wheat stripe rust resistance breeding.

Restricted access

The aim of this study was to investigate postprandial effects of two Chinese liquors on s elected cardiovascular disease risk factors in humans. Sixteen healthy men were randomized into three groups in a three-way crossover study: tea-flavor liquor (TFL), traditional Chinese liquor (TCL) and water control (WC). Every subject consumed 60 mL of either liquor (45% (v/v) ethanol) or water together with a high-fat meal, respectively. Compared with baseline, serum uric acid was significantly increased in TFL group (0.5-hour: P = 0.012; 1-hour: P = 0.001; 2-hour: P = 0.008) and it was significantly decreased in WC group (1-hour: P = 0.001; 2-hour: P = 0.001; 4-hour: P < 0.001), while uric acid was non-significantly increased in the TCL group. High-sensitive C-reactive protein (hs-CRP) was significantly increased in the TCL (P = 0.014) and WC (P = 0.008) groups at postprandial 4 hours compared with baseline. There was no significant difference between groups during the postprandial period for these two parameters or other biochemical parameters. In conclusion, both liquors increased postprandial uric acid, and no significant difference was observed for the effects of TFL and TCL on the measured biochemical parameters.

Restricted access

Abstract  

We prepared PANI/tetradecanol/MWNTs composites via in-situ polymerization. DSC results indicated that the composites are good form-stable phase change materials (PCMs) with large phase change enthalpy of 115 J g−1. The MWNTs were randomly dispersed in the composites and significantly enhanced the thermal conductivity of the PCMs from 0.33 to 0.43 W m−1 K−1. The form-stable PCMs won’t liquefy even it is heated at 80°C, so that the MWNTs were fixed in the composite and the phase separation of the MWNTs from PANI/tetradecanol/MWNTs composites won’t occur.

Restricted access