Search Results

You are looking at 11 - 20 of 21 items for :

  • Author or Editor: Jin Kim x
  • Chemistry and Chemical Engineering x
  • All content x
Clear All Modify Search

Abstract  

For air pollution monitoring, about 1300 airborne particulate matter samples were collected by using a low volume air sampler and a polycarbonate filter at two sampling sites in an urban region, Daejeon, the middle of Korea from 2003 to 2006. Mass concentrations of the black carbon were measured using a smoke stain reflectometer. The concentrations of 24 elements in the collected samples were analyzed by using instrumental neutron activation analysis, and its temporal trends and enrichment factors were investigated under different environmental conditions. Analytical control was carried out by using certified reference materials.

Restricted access

Abstract

In this study, a series of imidazolium-based ionic liquids (ILs) having carboxylic acid moieties were synthesized and used as new homogeneous catalysts to synthesize cyclic carbonates from CO2 and epoxides. Even in the absence of any co-catalyst and organic solvent, carboxylic-acid-functionalized ILs showed better catalytic activity in the coupling reaction of CO2 and styrene oxide for the production of styrene carbonate than did hydroxyl-functionalized ILs and conventional ILs without any functional moieties. A detailed investigation was carried out on a variety of factors that affected the reactivity, such as the alkyl chain length and the molecular composition of IL molecules including the halide ions. The effect of various reaction parameters such as reaction time, temperature, CO2 pressure and catalyst amount was also investigated in detail. The mechanism underlying the enhanced rate of the cycloaddition reaction in the presence of carboxylic-acid-functionalized ILs was proposed.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: Tack-Jin Kim, Yongju Jung, Joon-Bo Shim, Si-Hyung Kim, Seungwoo Paek, Kwang-Rak Kim, Do-Hee Ahn, and Hansoo Lee

Abstract  

In order to enhance the efficiency of pyrochemical technology, especially electrorefining process, physicochemical data of trivalent uranium in LiCl–KCl eutectic at 773 K were measured, including molar absorptivity, formal potential and diffusion coefficient of U3+ ions. The molar absorptivities of U3+ were determined to be 765 ± 48 and 686 ± 39 M−1 cm−1 at 465 and 550 nm, respectively. The formal potential of U3+/U4+ redox couple and diffusion coefficient of U3+ ions were measured to be −0.308 V vs. Ag/Ag+ and 8.7 × 10−6 M−1 cm−1, respectively. To elucidate the chemical behavior of U3+ ions under the existence of oxide ions, U3+ ions were reacted with oxides ions in situ produced at the LiCl–KCl media. Surprisingly, it was revealed from XRD patterns that UO2 was formed from the reaction between U3+ ions and O2− ions with the molar ratio of 1:1.

Restricted access

Abstract  

The present scientific study on uranium(VI) solvent extraction and vanadium(V) separation from sulfate solutions using Alamine 336 as an extractant diluted in kerosene was established. The preliminary experiments indicating the uranium extraction process will follow the solvation as well as ion-exchange mechanisms. In the present acid region (0.1–1.0 mol dm−3 H2SO4) it showing the ion-exchange type mechanism. Time (1–120 min) and temperature (25–55 °C) not influencing the present extraction system. Other experimental parameters like loading capacity of Alamine 336, stripping of uranium from loaded organic phase, recycling of Alamine 336 and separation of uranium(VI)/vanadium(V) was studied.

Restricted access

Abstract  

Instrumental neutron activation analysis was used to measure the concentrations of about 27 elements associated with airborne PM 10 samples that were collected from a roadside sampling station at a moderately polluted urban area of Taejon city, Korea. The magnitude of their concentrations was clearly distinguished and spanned over four orders. If compared in terms of enrichment factors, it was found that certain elements (e.g., As, Br, Cl, Sb, Se, and Zn) are enriched in PM 10 samples of the study site. The factor analysis indicated three factors with statistical significance, which may exert dominant controls on regulating the metal concentration levels in the study area.

Restricted access
Reaction Kinetics, Mechanisms and Catalysis
Authors: Jung-Nam Park, Jeong Kuk Shon, Mingshi Jin, Soo Sung Kong, Kiyoung Moon, Gwi Ok Park, Jin-Hyo Boo, and Ji Man Kim

Abstract

Highly ordered mesoporous ruthenium dioxide (meso-RuO2) has been successfully synthesized by controlling the surface hydrophobicity of a mesoporous silica template (KIT-6) via a nano-replication method. The meso-RuO2 material, thus obtained, exhibits a well-defined mesostructure and high surface area (131 m2 g−1). The physicochemical properties of the meso-RuO2 material are characterized by electron microscopy, X-ray diffraction, N2 adsorption–desorption, temperature programmed techniques, and X-ray photoelectron spectroscopy. Pretreatment of the meso-RuO2 catalyst under different gas environments (O2, H2 and CO) strongly affects the catalytic activity towards CO oxidation. The meso-RuO2, pretreated by O2 flowing at 200 °C, exhibited excellent catalytic activity for CO oxidation, 100% CO conversion with long-term stability at room temperature, whereas the meso-RuO2 catalysts with pretreatment under other conditions are not very active at room temperature. It is found that the surface oxygen species generated on the meso-RuO2 during O2 pretreatment at 200 °C provide CO oxidation activity at room temperature.

Restricted access

Abstract

During the process of fermentation, the chemical compositions of trifoliate orange (Poncirus trifoliate (L). Raf) changed greatly. To provide a completely phytochemical profile, high-performance liquid chromatography-diode array detector-hyphenated with tandem mass spectrometry (HPLC–DAD–ESI-MS/MS) has been successfully applied to screen and identify the unknown constituents of trifoliate orange during fermentation, which make it available for the quality control of fermented products. Multivariate statistical analysis was performed to classify the trifoliate oranges based on the status of fermentation. A total of 8 components were identified among the samples. Hierarchical Clustering Analysis (HCA) and Principal Component Analysis (PCA) demonstrated the fermented and unfermented trifoliate oranges were obviously different, an effective and reliable Partial Least Square Discriminate Analysis (PLS-DA) technique was more suitable to provide accurate discrimination of test samples based their different chemical patterns. Furthermore, a permutation validated the reliability of PLS-DA and variable importance plot revealed that the characterized syringing, naringin, and poncirin showed the high ability to distinguish the trifoliate oranges during fermentation. The present investigation could provide detailed information for the quality control and evaluation of trifoliate oranges during the fermentation process.

Open access

Abstract  

Instrumental neutron activation analysis was used for the analysis of 25 trace elements in airborne particulate matter (PM) for air pollution monitoring. For the collection of air samples, the Gent stacked filter unit low volume sampler and two types of Nuclepore polycarbonate filters were employed. Samples were collected at selected sampling dates in suburban and industrial regions of Daejon city in the Republic of Korea. Mass concentrations and black carbon of PM were measured, and enrichment factors were calculated. The results were used to describe the emission sources and their correlation patterns.

Restricted access

Abstract  

The spontaneous reduction of Eu3+ to Eu2+ was examined when EuCl3 was added into a pyroprocessing media of LiCl molten salt at 923 K. The amount of Eu2+ was calculated by measuring the total charge consumed to oxidize Eu2+ ions to Eu3+ ions. The concentration ratio of Eu2+ to Eu3+ was estimated to be about 0.40 in the media. In addition, it is confirmed that the reduction of Eu3+ to Eu2+ is caused by the oxidation power of Cl to Cl2. The coexistence of Eu3+ and Eu2+ in the LiCl molten salt system was examined by UV–Visible and luminescence spectroscopy. The molar absorptivities of Eu3+ and Eu2+, calculated from UV–Visible absorption spectra, were 423 and 1954 M−1 cm−1, respectively.

Restricted access

Abstract

Platinum catalysts supported on silicas with various physicochemical properties were prepared in order to investigate the effect of silica characteristics on their platinum dispersion and catalytic activity in the oxidation of carbon monoxide. Although titania-incorporation into silica and further treatment of the impregnated platinum precursor with hydrogen peroxide were effective for improving the dispersion and stability of platinum catalysts supported on silicas, regardless of the characteristic of the silicas, the platinum catalysts supported on fumed silica with a medium level of surface hydroxyl group concentration exhibited the highest catalytic activity among those supported on mesoporous silica, silica gel, and precipitated silica. The required properties of the highly active platinum catalyst seemed to be a high dispersion of platinum, the formation of a stable titania layer, and the generation of strong acid sites. By contrast, the precipitated silica with a small surface area and high concentration of surface hydroxyl groups was not appropriate for a catalytic support for platinum catalysts.

Restricted access