Search Results

You are looking at 11 - 20 of 34 items for

  • Author or Editor: L.Q. Li x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The molar heat capacities C p,m of 2,2-dimethyl-1,3-propanediol were measured in the temperature range from 78 to 410 K by means of a small sample automated adiabatic calorimeter. A solid-solid and a solid-liquid phase transitions were found at T-314.304 and 402.402 K, respectively, from the experimental C p-T curve. The molar enthalpies and entropies of these transitions were determined to be 14.78 kJ mol−1, 47.01 J K−1 mol for the solid-solid transition and 7.518 kJ mol−1, 18.68 J K−1 mol−1 for the solid-liquid transition, respectively. The dependence of heat capacity on the temperature was fitted to the following polynomial equations with least square method. In the temperature range of 80 to 310 K, C p,m/(J K−1 mol−1)=117.72+58.8022x+3.0964x 2+6.87363x 3−13.922x 4+9.8889x 5+16.195x 6; x=[(T/K)−195]/115. In the temperature range of 325 to 395 K, C p,m/(J K−1 mol−1)=290.74+22.767x−0.6247x 2−0.8716x 3−4.0159x 4−0.2878x 5+1.7244x 6; x=[(T/K)−360]/35. The thermodynamic functions H TH 298.15 and S TS 298.15, were derived from the heat capacity data in the temperature range of 80 to 410 K with an interval of 5 K. The thermostability of the compound was further tested by DSC and TG measurements. The results were in agreement with those obtained by adiabatic calorimetry.

Restricted access

Molecular markers are important tools that have been used to identify the short arm of rye chromosome 1R (1RS) which contains many useful genes introgressed into wheat background. Wheat expressed sequence tag (EST) sequences are valuable for developing molecular markers since ESTs are derived from gene transcripts and more likely to be conserved between wheat and its relative species. In the present study, 35 sequence-tagged site (STS) primers were designed based on EST sequences distributed on homology group 1 chromosomes of Triticum aestivum and used to screen specific markers for chromosome 1RS of Secale cereale . Two primer pairs different from the early studies, STS WE3 , which amplified a 1680-bp and a 1750-bp fragment, and STS WE126 , which produced a 850-bp fragment from rye genome, were proved to be specific to chromosome 1RS since the corresponding fragments were only amplified from 1R chromosome addition line and wheat-rye lines with chromosome 1RS, but not from wheat-rye 2R-7R chromosome addition lines and the other lines lacking chromosome 1RS. Eleven wheat-rye lines derived from ‘Xiaoyan 6’ and ‘German White’ were used to test the presence of specific markers for 1RS. The specific fragments of 1RS were amplified in 4 wheat-rye lines, but not in the other lines. The testing results using EST-STS markers of 1RS were consistent with those obtained from fluorescence in situ hybridization (FISH), suggesting that these markers specific to 1RS could be used in marker-assisted selection (MAS) for incorporating 1RS into wheat cultivars in breeding.

Restricted access

Analysis of the binding interaction of (−)-epigallocatechin-3-gallate (EGCG) and pepsin is important for understanding the inhibition of digestive enzymes by tea polyphenols. We studied the binding of EGCG to pepsin using fluorescence spectroscopy, Fourier transform infrared spectroscopy, isothermal titration calorimetry, and protein-ligand docking. We found that EGCG could inhibit pepsin activity. According to thermodynamic parameters, a negative ΔG indicated that the interaction between EGCG and pepsin was spontaneous, and the electrostatic force accompanied by hydrophobic binding forces may play major role in the binding. Data from multi-spectroscopy and docking studies suggest that EGCG could bind pepsin with a change in the native conformation of pepsin. Our results provide further understanding of the nature of the binding interactions between catechins and digestive enzymes.

Restricted access

The objective of this work was to research the antibacterial effects of orange pigment, which was separated from Monascus pigments, against Staphylococcus aureus. The increase of the diameter of inhibition zone treated with orange pigment indicated that orange pigment had remarkable antibacterial activities against S. aureus. Orange pigment (10 mg ml−1) had a strong destructive effect on the membrane and structure of S. aureus by the analysis of scanning electron microscopy as well as transmission electron microscopy. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) further demonstrated that the cell membrane was seriously damaged by orange pigment, which resulted in the leakage of protein from S. aureus cells. A significant decrease in the synthesis of DNA was also seen in S. aureus cells exposed to 10 mg ml−1 orange pigment. All in all, orange pigment showed excellent antibacterial effects against S. aureus.

Restricted access

Summary

The chemical compositions of essential oils extracted by n-hexane extract (HE), petroleum ether extract (PE), dichloromethane extract (DE), and hydrodistillation (HD) from Carthamus tinctorius L. (safflower) were analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 86 compounds from four different extracts were identified, and the contents were 97.65%, 98.05%, 98.93%, and 99.68%, respectively. 6,10,14-Trimethyl-2-pentadecanone, hexadecanoic acid, methyl ester, hexadecanoic acid, 8,11-octadecadienoic acid, methyl ester, and 9,12,15-octadecatrien-1-ol were the major constituents of the extracts. The antidiabete activity was assayed in vitro by against protein tyrosine phosphatase 1B (PTP1B). The results showed that the HE exhibited the best in vitro inhibitory enzyme activity against PTP1B, which holds a good potential for treating diabetes and obesity.

Open access

Traditional Chinese medicine (TCM) has been widely used in many countries for thousands of years and played an indispensable role in the prevention and treatment of diseases, especially the complicated and chronic ones. However, the application of TCM in diseases is still not fully recognized by people around the world, the main reason is that Chinese herb is a very complex mixture containing hundreds of different components. Thus, it is essential to make quality control and evaluation of TCM. A new quality evaluation method, quantitative analysis of multi-components by single marker (QAMS), was developed to the quality control of alkaloids in TCM, a case study on Radix aconiti lateralis, named Fuzi in Chinese. Six alkaloids, including aconitine, hypaconitine, mesaconitine, benzoylaconine, benzoylmesaconine, and benzoylhypaconine, were selected as main components to evaluate the quality of Radix aconiti lateralis. The feasibility and accuracy of QAMS were checked by the external standard method, and various high-performance liquid chromatographic instruments and chromatographic conditions were investigated to verify its applicability. Using aconitine as the internal reference substance and the content of aconitine was calculated according to relative correction factors by high-performance liquid chromatography. The present results showed that there was no significant difference observed between the QAMS method and the external standard method with the relative average deviations less than 3.0%, and QAMS is an effective way to control the quality of herbal medicines and seems to be a convenient and accurate approach to analyze multi-composition when reference substances are unavailable.

Open access
Cereal Research Communications
Authors:
Z. L. Li
,
D. D. Wu
,
H. Y. Li
,
G. Chen
,
W. G. Cao
,
S. Z. Ning
,
D. C. Liu
, and
L. Q. Zhang

Gliadin is a main component of gluten proteins that affect functional properties of bread making and contributes to the viscous nature of doughs. In this study, thirteen novel ω-gliadin genes were identified in several Triticum species, which encode the ARH-, ATDand ATN-type proteins. Two novel types of ω-gliadins: ATD- and ATN- have not yet been reported. The lengths of 13 sequences were ranged from 927 to 1269 bp and the deduced mature proteins were varied from 309 to 414 residues. All 13 genes were pseudogenes because of the presence of internal stop codons. The primary structure of these ω-gliadin genes included a signal peptide, a conserved N-terminal domain, a repetitive domain and a conserved C-terminus. In this paper, we first characterize ω-gliadin genes from T. timopheevi ssp. timopheevi and T. timopheevi ssp. araraticum. The ω-gliadin gene variation and the evolutionary relationship of ω-gliadin family genes were also discussed.

Restricted access

Objectives

Impaired intestinal barrier function has been demonstrated in the pathophysiology of diarrhea-predominant irritable bowel syndrome (IBS-D). This study aimed to describe the intestinal ultrastructural findings in the intestinal mucosal layer of IBS-D patients.

Methods

In total, 10 healthy controls and 10 IBS-D patients were analyzed in this study. The mucosa of each patient’s rectosigmoid colon was first assessed by confocal laser endomicroscopy (CLE); next, biopsied specimens of these sites were obtained. Intestinal tissues of IBS-D patients and healthy volunteers were examined to observe cellular changes by transmission electron microscopy (TEM).

Results

CLE showed no visible epithelial damage or inflammatory changes in the colonic mucosa of IBS-D compared with healthy volunteers. On transmission electron microscopic examination, patients with IBS-D displayed a larger apical intercellular distance with a higher proportion of dilated (>20 nm) intercellular junctional complexes, which was indicative of impaired mucosal integrity. In addition, microvillus exfoliation, extracellular vesicle as well as increased presence of multivesicular bodies were visible in IBS-D patients. Single epithelial cells appeared necrotic, as characterized by cytoplasmic vacuolization, cytoplasmic swelling, and presence of autolysosome. A significant association between bowel habit, frequency of abdominal pain, and enlarged intercellular distance was found.

Conclusion

This study showed ultrastructural alterations in the architecture of intestinal epithelial cells and intercellular junctional complexes in IBS-D patients, potentially representing a pathophysiological mechanism in IBS-D.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors:
X.-C. Lv
,
Z.-C. Tan
,
Z.-A. Li
,
Y.-S. Li
,
J. Xing
,
Q. Shi
, and
L.-X. Sun

Abstract  

The (R)-BINOL-menthyl dicarbonates, one of the most important compounds in catalytic asymmetric synthesis, was synthesized by a convenient method. The molar heat capacities C p,m of the compound were measured over the temperature range from 80 to 378 K with a small sample automated adiabatic calorimeter. Thermodynamic functions [H TH 298.15] and [S TS 298.15] were derived in the above temperature range with a temperature interval of 5 K. The thermal stability of the substance was investigated by differential scanning calorimeter (DSC) and a thermogravimetric (TG) technique.

Restricted access