Search Results

You are looking at 11 - 20 of 43 items for

  • Author or Editor: M. Matos x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Lanthanide picrates with 1,3-dithiane-1,3-dioxide ligand were synthesized and characterized. Thermal decomposition of these compounds by TG/DTG and DSC and structural studies were performed. It was found that the compounds are comprised in a single isomorphous series and their thermal decomposition occurs as exothermic events. The final products were found to be lanthanide dioxysulfates.

Restricted access

Abstract  

Captopril (CAP) was the first commercially available angiotensine-converting enzyme (ACE) inhibitor. In the anti-hypertensive therapy is considered the selected drug has to be therapeutically effective together with reduced toxicity. CAP is an antihypertensive drug currently being administered in tablet form. In order to investigate the possible interactions between CAP and excipients in tablets formulations, differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis completed by X-ray powder diffraction (XRPD) and Fourier transform infrared spectroscopy (FTIR) were used for compatibility studies. A possible drug-excipient interaction was observed with magnesium stearate by DSC technique.

Restricted access

Abstract  

A simplified RC model which simulates the operation mode of an isothermal titration calorimeter (ITC), when it is used in a continuous mode to determine heat of mixing, is proposed. The model takes into account several thermal effects that are evident in the mixing process and it must be identified and quantified to determine reliable values of heat of mixing. The main effects considered in the development of the model were those caused by: (i) the difference between the temperatures of the injected liquid and the mixture, (ii) the increase in heat capacity of the mixture and the thermal conductance of the couplings between the mixture and its surroundings and (iii) the changes in the power dissipated by stirring after injection. A good agreement between model and experimental results is observed.

Restricted access

Abstract  

In this paper, it has been carried out a study to analyze the effect of the stirring velocity in the experimental determination of the mixture enthalpies of several binary mixtures by using a Titration Calorimetric TAM2277-201/2250 by Thermometric AB. The tested liquid mixtures have been ethanol+water and those containing 1-methyl-2-pyrrolidone and (ethanediol, 1,2-propanediol or 1,2-butanediol). The stirring aim is to keep the homogeneity in the mixture process, but the stirring velocity must not be increased in excess in order not to favour the evaporation during the measurement process. This study reveals that every mixture process shows an optimum stirring velocity.

Restricted access

Abstract  

In the present work, the thermal decomposition of glimepiride (sulfonylurea hypoglycemic agent) was studied using differential scanning calorimetry (DSC) and thermogravimetry/derivative thermogravimetry (TG/DTG). Isothermal and non-isothermal methods were employed to determine kinetic data of decomposition process. The physical chemical properties and compatibilities of several commonly used pharmaceutical excipients (glycolate starch, microcrystalline cellulose, stearate, lactose and Plasdone) with glimepiride were evaluated using thermoanalytical methods. The 1:1 physical mixtures of these excipients with glimepiride showed physical interaction of the drug with Mg stearate, lactose and Plasdone. On the other hand, IR results did not evidence any chemical modifications. From isothermal experiments, activation energy (E a) can be obtained from slope of lnt vs. 1/T at a constant conversion level. The average value of this energy was 123 kJ mol–1. For non-isothermal method E a can be obtained from plot of logarithms of heating rates, as a function of inverse of temperature, resulting a value of 157 and 150 kJ mol–1, respectively, in air and N2 atmosphere, from the first stage of thermal decomposition.

Restricted access

Thermodynamic properties of the ternary system MTBE+1-propanol+hexane

Application of different group contribution models and empirical methods

Journal of Thermal Analysis and Calorimetry
Authors: M. M. Mato, S. M. Cebreiro, P. V. Verdes, J. L. Legido, and M. I. Paz Andrade

Summary Experimental excess molar enthalpies and excess molar volumes of the ternary system x 1MTBE+x 21-propanol+(1-x 1-x 2) hexane and the involved binary mixtures have been determined at 298.15 K and atmospheric pressure. Excess molar enthalpies were measured using a standard Calvet microcalorimeter, and excess molar volumes were determined from the densities of the pure liquids and mixtures, using a DMA 4500 Anton Paar densimeter. The UNIFAC group contribution model (in the versions of Larsen et al., and Gmehling et al.) has been employed to estimate excess enthalpies values. Several empirical expressions for estimating ternary properties from experimental binary results were applied.

Restricted access

Determination of experimental excess molar properties for MTBE+1-propanol+octane

Analysis and comparison with different theoretical methods

Journal of Thermal Analysis and Calorimetry
Authors: M. M. Mato, S. M. Cebreiro, P. V. Verdes, J. L. Legido, and M. I. Paz Andrade

Summary Experimental excess molar enthalpies and densities have been measured for the ternary mixture x 1MTBE+x 21-propanol+(1-x 1-x 2)octane and the involved binary mixtures at 298.15 K and atmospheric pressure. In addition, excess molar volumes were determined from the densities of the pure liquids and mixtures. A standard Calvet microcalorimeter was employed to determine the excess molar enthalpies. Densities were measured using a DMA 4500 Anton Paar densimeter. The UNIFAC group contribution model (in the versions of Larsen et al., and Gmehling et al.) has been used to estimate excess enthalpies values. Experimental data were also used to test several empirical expressions for estimating ternary properties from experimental binary results.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: S. Cebreiro, M. Illobre, M. Mato, V. Verdes, J. Legido, and M. Paz Andrade

Abstract  

We have determined the excess molar enthalpies H m E at 298.15 K and normal atmospheric pressure for the binary mixtures containing tert-butyl methyl ether (MTBE)+(methanol, ethanol, 1-propanol, 1-pentanol) using a Calvet microcalorimeter.

Restricted access

Summary Excess molar volumes of methyl tert-butyl ether (MTBE)+1-pentanol+octane and the binary mixtures MTBE+1-pentanol and 1-pentanol+octane, were measured at 298.15 K and atmospheric pressure, using a DMA 4500 Anton Paar densimeter. All the experimental values were compared with the results obtained by empirical expressions for estimating ternary properties from binary results.

Restricted access

Summary Densities at 298.15 K and atmospheric pressure have been measured, using a DMA 4500 Anton Paar densimeter, for the ternary mixture methyl tert-butyl ether (MTBE)+1-pentanol+decane and for the involved binary mixtures MTBE+1-pentanol and 1-pentanol+decane. The excess molar volumes for the binary mixture MTBE+decane was reported in an earlier work [1]. In addition, excess molar volumes were determined from the densities of the pure liquids and mixtures. Suitable fitting equations have been used in order to correlate adequately the excess molar volumes. The empirical expressions of Kohler [18], Jacob and Fitzner [19], Colinet [20], Knobeloch and Schwartz [21], Tsao and Smith [22], Toop [23], Scatchard et al. [24], Hillert [25], Mathieson and Thynne [26] were applied to estimate ternary properties from binary results.

Restricted access