Search Results

You are looking at 11 - 16 of 16 items for :

  • Author or Editor: Meng Zhang x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search
Journal of Thermal Analysis and Calorimetry
Authors:
F. Xu
,
L. Sun
,
J. Zhang
,
Y. Qi
,
L. Yang
,
H. Ru
,
C. Wang
,
X. Meng
,
X. Lan
,
Q. Jiao
, and
F. Huang

Abstract  

Heat capacities of the carbon nanotubes (CNTs) with different sizes have been measured by modulated temperature differential scanning calorimetry (MDSC) and reported for the first time. The results indicated the values of C p increased with shortening length of CNTs when the diameters of CNTs were between 60 and 100 nm. However, the values of C p of CNTs were not affected by their diameter when the lengths of CNTs were 1–2 um, or not affected by the length of CNTs when their diameters were below 10 nm. The thermal stabilities of the CNTs have been studied by TG-DTG-DSC. The results of TG-DTG showed that thermal stabilities of CNTs were enhanced with their diameters increase. With lengths increase, the thermal stabilities of CNTs increased when their diameters were between 60 and 100 nm, but there is a slight decrease when their diameters were less than 60 nm. The further DSC analyses showed both released heat and T onset increased with the increase of CNTs diameters, which confirms the consistency of the results from both TG-DTG and DSC on CNTs thermal stability.

Restricted access

Abstract  

Isoproturon [N'-(p-cumenyl)-N,N-dimethylurea] was synthesized, and the low-temperature heat capacities were measured with a small sample precise automatic adiabatic calorimeter over the temperature range from 78 to 342 K. No thermal anomaly or phase transition was observed in this temperature range. The melting and thermal decomposition behavior of isoproturon was investigated by thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). The melting point and decomposition temperature of isoproturon were determined to be 152.4 and 239.0C. The molar melting enthalpy, and entropy of isoproturon, ΔH m and ΔS m, were determined to be 21.33 and 50.13 J K-1 mol-1, respectively. The fundamental thermodynamic functions of isoproturon relative to standard reference temperature, 298.15 K, were derived from the heat capacity data.

Restricted access

Summary

A selective and sensitive liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) method was developed and validated for analysis of xanthotoxol (1), xanthotoxin (2), isoimpinellin (3), bergapten (4), oxypeucedanin (5), imperatorin (6), cnidilin (7), and isoimperatorin (8) in rat bile and urine using pimpinellin as an internal standard (IS). An Agilent 1200 liquid chromatography system (Agilent Technologies, USA) equipped with a quaternary pump, an autosampler, and a column compartment was used for all analyses. Chromatographic separations were performed on a Sapphire C18 column (150 mm × 4.6 mm, 5 μm), and the column temperature was maintained at 30°C; the sample injection volume was 10 μL. The specificity, linearity, accuracy, precision, recovery, matrix effect, and several stabilities were validated for all analytes in the rat bile and urine samples. The method was successfully applied in monitoring the concentrations of eight coumarins in rat bile and urine after a single oral administration of Radix Angelicae Dahuricae extract with a dosage of 8.0 mL/kg. In the bile samples, the eight coumarins excreted completely in twenty-four hours. The average percentages of coumarins (1–8) excreted were 0.045%, 0.019%, 0.177%, 0.105%, 0.337%, 0.023%, 0.024%, 0.021%. In the urine samples, the eight coumarins excreted completely in seventy-two hours. The average percentages of coumarins (1–8) excreted were 1.78%, 0.095%, 0.130%, 0.292%, 0.082%, 0.008%, 0.005%, 0.004%. The method is robust and specific and it can successfully complete the requirements of the excretion study of the eight coumarins in Radix Angelicae Dahuricae.

Open access

Abstract

A sensitive and rapid method using HPLC-MS/MS was developed for the determination of eight glucocorticoids residues in chicken muscle simultaneously by Turbo Flow. The eight glucocorticoids were prednisone, prednisolone, hydrocortisone, methylprednisolone, dexamethasone, betamethasone, beclomethasone and fludrocortisones. Samples were extracted with ethyl acetate and on-line cleaned up through a Turbo Flow solid-phase extraction column without time-consuming pretreatment before HPLC-MS/MS analysis. Sample pretreatment conditions, Turbo Flow conditions and mass spectral parameters were optimized and obtained eight glucocorticoids calibration curves. These curves showed good linearity over the concentration from 0.2 μg/kg to 50 μg/kg with an average recovery from 71.63% to 117.36%. This method could be applied on real samples and provided simple, rapid, sensitive and highly selective analysis, which made it feasible to be adopted in food inspection organizations or carry out quantitative analysis for other banned substance.

Open access

Abstract

Two sensitive and effective methods were developed for the detection of catecholamines and related biogenic amines (dopamine, epinephrine, norepinephrine, serotonin, levodopa and tyramine) using high performance liquid chromatography with fluorescence detection and capillary electrophoresis with laser-induced fluorescence detection. A BODIPY fluorescent dye, 1, 3, 5, 7-tetramethyl-8-(N-hydroxysuccinimidyl propionic ester)-difluoroboradiaza- s-indacene was used as pre-column derivatization reagent. The separation and derivatization conditions were optimized in detail. In high performance liquid chromatography with fluorescence detection method, the derivatization reaction was completed at 35 °C for 20 min. At the wavelength of λ ex/λ em = 493 nm/513 nm, dopamine, epinephrine, norepinephrine, and levodopa derivatives achieved baseline separation within 15 min. The limits of detection (S/N = 3) were 1.0, 2.0, 5.0, and 0.5 nmol/L, respectively. In capillary electrophoresis with laser-induced fluorescence detection method, the derivatization reaction was completed at 25 °C for 20 min. Serotonin, tyramine and dopamine derivatives reached baseline separation within 10 min at the wavelength of λ ex = 473 nm. The limits of detection (S/N = 3) for serotonin, tyramine, and dopamine were 0.3, 0.02, and 0.2 nmol/L, respectively. The amino compounds in human serum and urine samples were detected successfully, and the recoveries were 93.3%–106.7% and 91.0%–103.1%, respectively.

Open access
Acta Chromatographica
Authors:
Yonghui Shen
,
Deru Meng
,
Feifei Chen
,
Hui Jiang
,
Liming Hu
,
Yunfang Zhou
, and
Miaomiao Zhang

Abstract

Sarecycline is a narrow-spectrum antibiotic for the treatment of acne, which is a chronic inflammatory disease of the hair follicle sebaceous glands. In the study, UPLC-MS/MS was used to establish a rapid and accurate analytical method. The sarecycline was determined with poziotinib as internal standard (IS) in rat plasma. An ACQUITY UPLC HSS T3 column (2.1 × 100 mm, 1.8 μm) could performe chromatographic separation with the mobile phase (methanol: water of 0.1% formic acid) with gradient elution. The ions of target fragment were m/z 488.19→410.14 for sarecycline and m/z 492.06→354.55 for poziotinib, which could quantify the electrospray ionization of positive multiple reaction monitoring (MRM) mode. The linear calibration curve of the concentration range was 1–1,000 ng/mL for sarecycline with a lower limit of quantification (LLOQ) of 1 ng/mL. The mean recovery was between 82.46 and 95.85% for sarecycline and poziotinib in rat plasma. RSD for precision of inter-day and intra-day were between 3.24 and 13.36%, and the accuracy ranged from 105.26 to 109.75%. The developed and validated method was perfectly used in the pharmacokinetic study and bioavailability of sarecycline after intravenous and oral administration in rats.

Open access