Search Results

You are looking at 11 - 20 of 34 items for

  • Author or Editor: Ping Zhang x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Hydrocalumite (CaAl-Cl-LDH) has the similar structure to layered double hydroxide (LDH). The effects of Na-dodecylsulfate (SDS) on the structure, morphology, and thermal property of CaAl-Cl-LDH have been investigated. Through ion exchange, CaAl-Cl-LDH had been modified with SDS at two concentrations: 0.005 mol L−1 and 0.2 mol L−1. Two different adsorption behaviors were observed through Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD) patterns. When the SDS concentration was 0.005 mol L−1, surface anion exchange was the major process. When the SDS concentration was 0.2 mol L−1, anion exchange intercalation occurs, with the interlayer distance expanded to 3.25 nm, and the particle morphology from regular hexagons to irregular platelets. The thermal analysis (TG–DTA) showed that dehydration and dehydroxylation occur at a lower temperature when hydrocalumite was intercalated with dodecylsulfate. All these observations revealed that the property of CaAl-Cl-LDH has been changed by SDS modification.

Restricted access

Abstract  

In this study, the microcalorimetric method was applied to investigate the activity of berberine on Shigella dysenteriae (S. dysenteriae). Heat flow power (HFP)–time curves of the growth metabolism of S. dysenteriae affected by berberine were determined using the thermal activity monitor (TAM) air isothermal microcalorimeter, ampoule mode, at 37 °C. By analyzing these curves and some quantitative parameters using multivariate analytical methods, similarity analysis (SA) and principal component analysis (PCA), the antibacterial activity of berberine on S. dysenteriae could be accurately evaluated from the change of the two main parameters, the maximum heat flow power P m 2 and total heat output Q t: berberine at low concentration (25 μg mL−1) began to inhibit the growth of S. dysenteriae, high concentrations (50–200 μg mL−1) of berberine had strong antibacterial activity on S. dysenteriae, when the concentration of berberine was higher (250–300 μg mL−1), this antibacterial activity was stronger. All these illustrated that the antibacterial activity of berberine on S. dysenteriae was enhanced with the increase of the concentration of this compound. Berberine can be used as potential novel antibacterial agent for treating multidrug-resistant Shigella. This work provided a useful idea of the combination of microcalorimetry and multivariate analysis for studying the activity of other compounds or drugs on organisms.

Restricted access

Abstract  

Using a LKB-2277 bioactivity monitor, stop-flow mode, the power–time curves of Candida albicans growth at 37 °C affected by berberine were measured. The check experiments were studied based on agar cup method to observe the inhibitory diameter and serial dilution method to determine the minimal inhibitory concentration (MIC) of berberine on C. albicans growth. By analyzing the quantitative thermogenic parameters taken from the power–time curves using correspondence analysis (CA), we could find that berberine at a low concentration (5.0 μg mL−1) began to inhibit the growth of C. albicans and at a high concentration (75.0 μg mL−1) completely inhibited C. albicans growth. The anti-fungal activity of berberine could also be expressed as half-inhibitory concentration IC50, i.e., 50% effective in this inhibition. The value of IC50 of berberine on C. albicans was 34.52 μg mL−1. The inhibitory diameters all exceeded 10 mm in test range and the MIC was 500 μg mL−1. Berberine had strong anti-fungal effect on C. albicans growth. This work provided an important idea of the combination of microcalorimetry and CA for the study on anti-fungal effect of berberine and other compounds. Compared with the agar cup method and serial dilution method, microcalorimetry not only offered a useful way for evaluating the bioactivity of drugs, but also provides more information about the microbial growth and all this information was significant for the synthesis and searching of antibiotics.

Restricted access

A simple, rapid, and effective high-performance thin-layer chromatographic (HPTLC) method has been established for differentiating among the polysaccharides present in six traditional Chinese medicines (TCM), Cordyceps sinensis, Ganoderma lucidum, Astragalus memberanaceus, Panax ginseng, Panax quinquefolii , and Panax notogiseng . Acid hydrolyzates of the polysaccharides were analyzed by HPTLC with two detection reagents, aniline-diphenylamine-phosphoric acid and ninhydrin, and scanning densitometry. The compounds were separated on silica gel plates with chloroform- n -butanol-methanol-acetic acid-water 4.5:12.5:5:1.5:1.5 ( v/v ) as mobile phase. Seven monosaccharides and two glucuronic acids were used as reference compounds. The results showed that hydrolysis of polysaccharides can release specific molecules present in the herbal species in addition to the monosaccharides present. This is useful for distinguishing the origins of the polysaccharides in Chinese medicines.

Restricted access

Abstract  

Uranyl luminescences in phosphoric acid system has been studied. Uranyl excited by a nitrogen laser shows single or biexponential luminescence decays in the phosphoric acid system. When the uranyl ion or phosphoric acid concentration are lower, a single exponential luminescence decay appears, whereas at higher uranyl ion or phosphoric acid concentrations, biexponential decay is observed. Time-resolved spectra of uranyl in this system are measured. The reasons of the phenomena are tentatively established.

Restricted access

Flow chemistry has attracted significant interest in pharmaceutical development, where substantial efforts have been directed toward the design of continuous processes. Here, we report a total synthesis of atropine in flow that features an unusual hydroxymethylation and separation of several byproducts with high structural similarity to atropine. Using a combination of careful pH control in three sequential liquid—liquid extractions and a functionalized resin, atropine is delivered by the flow system with >98% purity.

Restricted access

Abstract  

The need of reliable production of N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB), a versatile 18F-labeled prosthetic group for protein labeling, has increased dramatically due to the easy availability of proteins or their engineered derivatives for targeted molecular imaging. A module-assisted radiosynthesis of [18F]SFB was developed using a three-step, one-pot procedure and ethyl 4-(trimethylammonium)benzoate triflate (1) as the starting material. The radiochemical transformations were carried out in a general-purpose, custom-made module and streamlined by an anhydrous deprotection strategy using t-BuOK/DMSO. After HPLC-purification, [18F]SFB was synthesized in radiochemical yields of 20–30% (n > 10, not decay-corrected) and excellent radiochemical and chemical purities (>98%). The total synthesis and purification time required is ~90 min. Using the purified [18F]SFB, three 18F-labeled proteins, bovine serum albumin (BSA), chicken egg albumin (CEA) and transferrin, were synthesized in yields of 61.0–79.5%. The 18F-Annexin V for apoptosis imaging was also produced in 5% radiolabeling yield and >95% radiochemical purity.

Restricted access

Abstract

This paper aims to reveal the relationship and structure of library and information science (LIS) journals in China. 24 core LIS journals in China are selected and the relevant data of journal co-citation are retrieved from Chinese Journal Full-Text Database constructed by China National Knowledge Infrastructure during the period of 1999–2009. By calculating mean co-citation frequencies and correlation coefficients, we find that there is a strong relationship among LIS journals in China. Utilizing the methods of cluster analysis, multidimensional scaling analysis and factor analysis, we analyze the data of journal co-citation. LIS journals in China are divided into four clusters. The relatedness among journals is shown manifestly through their locations in the two-dimensional map. A three-factor solution is obtained with the factor loading of each journal. Finally, we interpret and discuss the results to get some conclusions and also expect to describe the network characters of journal co-citation in future research.

Restricted access

Abstract  

The importance of angiogenesis in tumor growth and metastasis has led to develop new imaging tracers to understand angiogenic vasculature. Based on the previous study, we further focused on the tumor molecular imaging application of the novel peptide Arginine-Arginine-Leucine (Tyr-Cys-Gly-Gly-Arg-Arg-Leu-Gly-Gly-Cys, tRRL) in this study. The cytotoxicity of raioiodinated tRRL (131I-tRRL) in HepG2 cells was assessed by tested cell viability using kit. tRRL was conjugated with fluorescein FITC to observe its binding with tumor cells and human aortic endothelial cells (HAEC) in vitro. Whole body SPECT imaging of varied tumors xenograftes was performed after intravenous injection of 131I-tRRL for 24 h in BALB/c nude mice. Compared with negative control PBS, small peptide tRRL was of non-cytotoxicity. 131I-tRRL could lead to significant cytotoxicity on HepG2 cells when the radioactivity was greater than 370 kBq. In vitro binding experiment and cellular uptake results revealed that tRRL could adhere to tumor cells besides tumor derived endothelial cells. In vivo SPECT imaging, 131I-tRRL mainly accumulated in various tumor tissues, including melanoma, liver cancer and lung cancer bearing mice. In breast cancer xenografte imaging, the tumor has no significant radionuclide accumulation at 24 h after injected of 131I-tRRL. Radioiodinated tRRL offers a noninvasive nuclear imaging method for functional molecular imaging of tumors, and may be a promising candidate carrier for tumor targeted therapy.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors:
Yuying Zhang
,
Haogui Zhao
,
Qiaohui Fan
,
Xiaobei Zheng
,
Ping Li
,
Shengping Liu
, and
Wangsuo Wu

Abstract  

Sorption of U(VI) from aqueous solution to decarbonated calcareous soil (DCS) was studied under ambient conditions using batch technique. Soil samples were characterized by XRD, FT-IR and SEM in detail and the effects of pH, solid-to-liquid ratio (m/V), temperature, contact time, fulvic acid (FA), CO2 and carbonates on U(VI) sorption to calcareous soil were also studied in detail using batch technique. The results from experimental techniques showed that sorption of U(VI) on DCS was significantly influenced by pH values of the aqueous phase, indicating a formation of inner-sphere complexes at solid–liquid interface, and increased with increasing temperature, suggesting the sorption process was endothermic and spontaneous. Compared to Freundlich model, sorption of U(VI) to DCS was simulated better with Langmuir model. The sorption equilibrium could be quickly achieved within 5 h, and sorption results fitted pseudo-second-order model well. The presence of FA in sorption system enhanced U(VI) sorption at low pH and reduced U(VI) sorption at high pH values. In absence of FA, the sorption of U(VI) onto DCS was an irreversible process, while the presence of FA reinforced the U(VI) desorption process reversible. The presence of CO2 decreased U(VI) sorption largely at pH >8, which might due to a weakly adsorbable formation of Ca2UO2(CO3)3 complex in aqueous phase.

Restricted access