Search Results

You are looking at 11 - 20 of 63 items for

  • Author or Editor: Q. Li x
  • Refine by Access: All Content x
Clear All Modify Search

Summary  

Cyanocobalamin (CNCbl), a kind of vitamin B12 (cobalamin, Cbl), which has a special binding capability to rapid dividing cells and proliferating tissue, especially tumors, has been modified and labeled by 99mTc. The optimal labeling condition was determined, and the biodistribution of 99mTc-DTPA-b-CNCbl both in normal mice and TA2 mice bearing MA891 mammary tumors were studied. 99mTc-DTPA-b-CNCbl showed low uptake and rapid clearance in nontarget tissues, and renal excretion. About 40% of uptake at 1 hour remained in the tumor at 12 hours p.i. The satisfying ratio of T/NT was acquired at 6 hours p.i.

Restricted access

Saccharomyces cerevisiae MERIT.ferm was used as mono- and mixed-cultures with Williopsis saturnus var. mrakii NCYC500 in mango wine fermentation. A ratio of 1:1000 (Saccharomyces:Williopsis) was chosen for mixed-culture fermentation to enable longer persistence of the latter. The monoculture of S. cerevisiae and mixed-culture was able to ferment to dryness with 7.0% and 7.7% ethanol, respectively. The monoculture of W. mrakii produced 1.45% ethanol. The mango wines fermented by S. cerevisiae alone and the mixed-culture were more yeasty and winey, which reflected their higher amounts of fusel alcohols, ethyl esters and medium-chain fatty acids. The mango wine fermented by W. mrakii alone was much less alcoholic, but fruitier, sweeter, which corresponded to its higher levels of acetate esters.

Restricted access

Berberine, a primary pharmacological active constitute of Coptidis Rhizoma, could inhibit neuronal apoptosis in cerebral ischemia. Here, we aimed to investigate whether and how HIF-1 is implicated in the anti-apoptosis effect of berberine on neurons under hypoxia/ischemia. Viability of PC12 cells treated with berberine prior to or following CoCl2-induced hypoxia was evaluated. Annexin V-PI staining was employed to analyse cell apoptosis ratio. HIF-1α and apoptosis-associated molecules were detected via Western blotting. TUNEL and immunohistochemistry were used to demonstrate apoptosis, HIF-1α and p53 levels in cerebral tissue of middle cerebral artery occlusion (MCAO) rats. Berberine pretreatment promoted PC12 cells survival and inhibited apoptosis under hypoxia condition. At the same time, it decreased cell viability and enhancement of apoptosis were observed with berberine treatment under hypoxia. Decreased HIF-1α, caspase 9, caspase 3 and increased Bcl-2/Bax ratio were responsible for the anti-apoptosis of berberine pretreatment. However, pro-apoptosis by berberine under hypoxia was indicated with opposing regulation of those molecules. Significant reduction of apoptosis, HIF-1α and p53 were found in cerebral tissue of MCAO rats treated with berberine. The present study suggests that berberine regulates neuronal apoptosis in cerebral ischemia, which might be dependent on the degree of cell injury. HIF-1 and the followed apoptotic pathway are involved in those effects of berberine.

Restricted access

Summary

A rapid, simple, and practical high-performance liquid chromatographic method (HPLC) was developed and validated for the simultaneous determination of norephedrine (NME), norpseudoephedrine (NMP), ephedrine (E), pseudoephedrine (PE), and methylephedrine (ME) in traditional Chinese medicines (TCM) which contained Ephedrae Herba (Ephedra). This analysis could be accomplished within 12.5 min with an Alltima Phenyl Column by isocratic elution using a mixture of KH2PO4 (20 mM)-acetonitrile (96:4, v/v) as the mobile phase at a flow-rate of 0.6 mL min−1 and a wavelength of 210 nm. This method was successfully applied to quantify ephedra alkaloids in both Ma-xing-gan-shi decoction and Ephedra decoction. The concentration of total ephedra alkaloids (4.62 mg mL−1) in Ma-xing-gan-shi decoction was much lower than that (7.10 mg mL−1) in Ephedra decoction. Furthermore, the concentration of NME, NMP, E, PE, and ME was significantly lower in Ma-xing-gan-shi decoction than that in Ephedra decoction, respectively. The method was easily acceptable and would be popular with most analytical laboratories.

Open access

Summary

A reversed-phase high-performance liquid chromatographic method was developed for the first time to simultaneously determine salicin and eight flavonoids in leaves of Salix matsudana, that is salicin, luteolin-7-O-glucoside, myricetin, apigenin-3′-oxyethyl-7-O-glucoside, rutin, quercetin, luteolin, kaempferol and apigenin. The separation of these compounds was achieved on a reversed phase C18 column (250 × 4.6 mm, 5 μm), with linear gradient of methanol in 0.2% phosphoric acid solution with a flow rate of 1.0 mL/min with UV detection at 246 nm. The calibration curves for the determination of all analytes showed good linearity over the investigated ranges (r > 0.999). The % relative standard deviation (% RSD) values were less than 0.34%, and the recoveries were between 95.79% and 99.94%. The values of luteolin-7-O-glucoside, salicin, myricetin, apigenin-3′-oxyethyl-7-O-glucoside, rutin, quercetin, luteolin, kaempferol, and apigenin were 1.0 μg g−1, 20.0 μg g−1, 32.9 μg g−1, 2.0 μg g−1, 29.5 μg g−1, 6.0 μg g−1, 1.0 μg g−1, 3.5 μg g−1, and apigenin was not found in the sample. This developed method can be used for evaluating the quality of different plant materials.

Full access

A micellar high-performance liquid chromatography (HPLC) method has been described for simultaneous determination of ephedrine, pseudoephedrine, and methylephedrine in Ephedra Herb and two traditional Chinese preparations. The separation and determination of ephedrine, pseudoephedrine, and methylephedrine were performed using a mobile phase containing 1.75 × 10−1 mol·L−1 sodium dodecyl sulphate and 0.02 mol·L−1 potassium hydrogen phosphate with 10% (v/v) methanol at pH 3.0, running at 1.5 mL·min−1 by a Venusil XBP C18 (250 × 4.6 mm, 5 μm) column at 40 °C. The detected wavelength was set at 210 nm. The method was validated according to the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) guidelines. The main analytical parameters were linearity (r > 0.9990), intra- and inter-day precisions (relative standard deviation [RSD %], 0.33–1.63, and RSD %, 1.26–2.20, respectively), limit of quantifications [LOQs], and limit of detections [LODs] (2.6 × 10−4 and 7.8 × 10−5 mg·mL−1 for ephedrine, 6.8 × 10−4 and 2.0 × 10−4 mg·mL−1 for pseudoephedrine, and 5.0 × 10−4 and 1.5 × 10−4 mg·mL−1 for methylephedrine). RSDs of recoveries were <5.5% in the three samples. Based on the optimized chromatographic conditions and the eluted orders, a model of separation mechanism for the analytes was established. The results indicated that the proposed method was an accurate, “green” and cheap method.

Open access

Abstract  

The stability of β-cyclodextrinethyl benzoate6H2O(β-CDC6H5COOC2H56H2O) was investigated by TG and DSC. The mass loss takes place in three stages: the dehydration occurs at 50-120C; the dissociation of β-CDC6H5COOC2H5occurs at 200-260C; the decomposition of β-CD begins at 280C. The kinetics of the dissociation of β-CDC6H5COOC2H5in a dry nitrogen flow was studied by means of thermogravimetry both at constant temperature and linearly increasing temperature. The results show that the dissociation of β-CDC6H5COOC2H5is dominated by a three-dimensional diffusion process (D3). The activation energy E is 116.19 kJ mol-1and the pre-exponential factor A 6.5358109min-1. Cyclodextrin is able to form inclusion complexes with a great variety of guest molecules, and the studies focus on the energy of binding between cyclodextrin and the guest molecule. In this paper, the β-cyclodextrinethyl benzoate inclusion complex was studied by fluorescence spectrophotometry and infrared absorption spectroscopy, and the results show that the stable energy of inclusion complexes of β-CD with weakly polar guest molecules consists mainly of van der Waals interaction.

Restricted access

Abstract  

External-beam PIXE was used for the non-destructive analysis of early glasses unearthed from the tombs of Warring States (475–221BC) and Han Dynasty (BC 206–AD 220) in south China. It was found that these glasses were basically attributed to PbO—BaO—SiO2 system and K2O—SiO2 system. The results from the cluster analysis showed that some glasses had exactly the same recipe. The source of the K2O flux and the correlation between PbO and BaO are discussed. Some archeological information is revealed.

Restricted access

Barley stripe mosaic virus (BSMV)-based virus induced gene silencing (VIGS) is an effective strategy for rapid determination of functional genes in wheat plants. ERECTA genes are reported to regulate stomatal pattern of plants, and manipulation of TaERECTA (a homologue of ERECTA in bread wheat) is a potential route for investigating stomatal development. Here, the leucine-rich repeat domains (LRRs) and transmembrane domains of TaERECTA were selected to gain BSMV:ER-LR and BSMV:ER-TM constructs, respectively, targeting TaERECTA for silencing in wheat cultivars ‘Bobwhite’ and ‘Cadenza’, to identify the function of TaERECTA on stomatal patterns. The results showed that reduced expression of TaERECTA caused an increased stomatal and epidermal cell density by average 13.5% and 3.3%, respectively, due to the significantly reduced size of leaf epidermal and stomatal cells, and this led to an increase in stomatal conductance. These suggest that modulation of TaERECTA offers further opportunities in stomatal engineering for the adaptation of photosynthesis in wheat.

Restricted access

Abstract

Nattokinase (NK) is effective in the prevention and treatment of cardiovascular disease. Cucumber is rich in nutrients with low sugar content and is safe for consumption. The aim of this study was to construct a therapeutic cucumber that can express NK, which can prevent and alleviate cardiovascular diseases by consumption. Because the Bitter fruit (Bt) gene contributes to bitter taste but has no obvious effect on the growth and development of cucumber, so the NK-producing cucumber was constructed by replacing the Bt gene with NK by using CRISPR/Cas9. The pZHY988-Cas9-sgRNA and pX6-LHA-U6-NK-T-RHA vectors were constructed and transformed into Agrobacterium tumefaciens EHA105, which was transformed into cucumber by floral dip method. The crude extract of NK-producing cucumber had significant thrombolytic activity in vitro. In addition, treatment with the crude extract significantly delayed thrombus tail appearance, and the thrombin time of mice was much longer than that of normal mice. The degrees of coagulation and blood viscosity as well as hemorheological properties improved significantly after crude extract treatment. These findings show that NK-producing cucumber can effectively alleviate thrombosis and improve blood biochemical parameters, providing a new direction for diet therapy against cardiovascular diseases.

Open access