Search Results
You are looking at 11 - 20 of 42 items for
- Author or Editor: Q. Yang x
- Refine by Access: All Content x
Abstract
The combustion behavior of Shuangya Mountain (SYM) coal dust has been investigated by means of TG in this paper. The reaction fraction can be obtained from isothermal TG data. The regressions of g(), an integral function of vs. t for different reaction mechanisms were performed. The mechanism of nucleation and nuclei growth is determined as the controlling step of the coal dust combustion reaction by the correlation coefficient of the regression, and the kinetic equation of the SYM coal dust combustion reaction has been established.
Abstract
Soybean oil based polyols (5-OH polyol, 10-OH polyol and 15-OH polyol) were synthetised from epoxidized soybean oil. The melting peak of polyols and the relationship between melting peak and the number-average functionality of hydroxyl in polyols were investigated by differential scanning calorimetry (DSC). The thermal decomposition of polyols and some of their thermal properties by thermogravimetry (TG) and derivative thermogravimetry (DTG) were also studied. The thermal stability of polyols in a nitrogen atmosphere was very close hence they had a same baseplate of triglyceride for polyols. The extrapolated onset temperature of polyols in their thermal mass loss, first step had a decreasing order: 5-OH polyol>10-OH polyol>15-OH polyol due to the difficulty in forming multiple elements ring of them had the same order. The thermal behavior of polyols under non-isothermal conditions using Friedman’s differential isoconversional method with different heating rates indicated that the 5-OH polyol had the lowest activation energy in thermal decomposition amongst these polyols according to the same fractional mass loss because of the weakest intramolecular oligomerization. The 15-OH polyol was prior to reach the mass loss region because the six-member ring is more stable than the three-member ring from 10-OH polyol and more easily formed.
Abstract
The nano-iron oxyhydroxides (α- and γ-FeOOH) were synthesized by using three ferrous and ferric salts (FeSO4, FeCl2, Fe(NO3)3) as iron precursors under alkaline conditions. Morphologies of nano-iron oxyhydroxides were characterized by employing X-ray powder diffraction (XRD) and specific surface area (SSA) analysis respectively. The occurrence of needle-like shape of nano-goethite and rod-like shape of nano-lepidocrocite were attributed to hydrolysis of Fe3+ cations and/or oxidization of Fe2+ at alkaline conditions in terms of XRD analysis. The N2-BET SSA and BJH (Barrett–Joyner–Halenda) pore size analysis showed that internal SSA of nano-lepidocrocite is higher than that of nano-goethite, although they have similar N2-BET SSAs. The distribution of average pore size of nano-iron oxyhydroxides are higher than that of predominant pore size due to formation of the heterogeneous nanoparticles under the experimental conditions. These nanoparticles possess the high sorption capacity and the strong affinity for contaminants. Application of nano-iron oxyhydroxides in environmental engineering plays an important role to remove a variety of contaminants, such as heavy-metal ions and organic pollutants.
Summary
Cyanocobalamin (CNCbl), a kind of vitamin B12 (cobalamin, Cbl), which has a special binding capability to rapid dividing cells and proliferating tissue, especially tumors, has been modified and labeled by 99mTc. The optimal labeling condition was determined, and the biodistribution of 99mTc-DTPA-b-CNCbl both in normal mice and TA2 mice bearing MA891 mammary tumors were studied. 99mTc-DTPA-b-CNCbl showed low uptake and rapid clearance in nontarget tissues, and renal excretion. About 40% of uptake at 1 hour remained in the tumor at 12 hours p.i. The satisfying ratio of T/NT was acquired at 6 hours p.i.
Abstract
Excess molar enthalpies of binary mixtures for tributyl phosphate (TBP)+methanol/ethanol were measured with a TAM air Isothermal calorimeter at 298.15 K and ambient. The results for xTBP+(1–x)CH3OH are negative in the whole range of composition, while the values for xTBP+(1–x)C2H5OH change from positive values at low x to small negative values at high x. The experimental results have been correlated with the Redlich–Kister polynomial. IR spectra of the mixtures were measured to investigate the effect of hydrogen bonding in the mixture.
Abstract
The complex (C11H18NO)2CuCl4(s) was synthesized. Chemical analysis, elemental analysis, and X-ray crystallography were used to characterize the structure and composition of the complex. Low-temperature heat-capacities of the compound were measured by an adiabatic calorimeter in the temperature range from 77 to 400 K. A phase transition of the compound took place in the region of 297–368 K. Experimental molar heat-capacities were fitted to two polynomial equations of heat-capacities as a function of the reduced temperature by least square method. The peak temperature, molar enthalpy, and entropy of phase transition of the compound were calculated to be T trs = 354.214 ± 0.298 K, Δtrs H m = 76.327 ± 0.328 kJ mol−1, and Δtrs S m = 51.340 ± 0.164 J K−1 mol−1.
This research was aimed to study the cell wall degradation and the dynamic changes of Ca2+ and related enzymes in developing aerenchyma of wheat root under waterlogging. An examination of morphological development by light and electron microscope revealed that the structure of cell wall in middle cortical cells remained intact after 12 h of waterlogging and turned thinner after waterlogging for 24 h. At 48 h, the aerenchyma has been formed. The cellulase activity gradually increased in middle cortical cells within 24 h of waterlogging, and decreased with the formation of aerenchyma. Fluorescence detection and subcellular localization of Ca2+ showed the dynamic changing of Ca2+ at the cellular and subcellular levels during the development of aerenchyma. The activity of Ca2+-ATPase enhanced markedly in intercellular space, plasma membrane and tonoplast of some middle cortical cells after 8 h of waterlogging and remained high after 24 h, but it decreased after 48 h of waterlogging. All these suggests that cellulase, Ca2+ and Ca2+-ATPase show a dynamic distribution during the aerenchyma development which associated with the cell wall degradation of middle cortical cells. Moreover, there is a feedback regulation between Ca2+ and Ca2+-ATPase.
Summary
The method of high-performance liquid chromatography (HPLC) with diode array detector (DAD) was used and validated for the simultaneous determination of nine flavonoids (rutin, myricetin, quercitrin, quercetin, luteolin, genistein, kaempferol, apigenin, and isorhamnetin) in beagle dog plasma. Plasma sample was pre-treated with acetonitrile (containing 0.05% formic acid). Chromatographic separation was performed on a kromasil C18 column (250 × 4.6 mm, 5 µm) maintained at 35 °C. The mobile phase was a mixture of methanol and 0.2% formic acid with a step linear gradient. At 1.0 mL min−1 flow rate, the eluent of other eight flavonoids was detected simultaneously at 360 nm with good separation except genistein (detected at 254 nm). Under optimum conditions, the correlation coefficient between the peak area and the concentrations for each analyte was all above 0.999. The intra-day and inter-day precisions were less than 10% for all analytes. The limit of detection and the limit of quantification for the selected nine flavonoids were 0.006–0.03 and 0.02–0.12 g mL−1, respectively. The extracted recoveries of selected nine flavonoids were 74.02%–99.37%. The assay has been successfully applied to determine concentrations of nine flavonoids in plasma from beagle dog after being intravenously administrated Ginkgo biloba extract.
Summary
The chemical compositions of essential oils extracted by n-hexane extract (HE), petroleum ether extract (PE), dichloromethane extract (DE), and hydrodistillation (HD) from Carthamus tinctorius L. (safflower) were analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 86 compounds from four different extracts were identified, and the contents were 97.65%, 98.05%, 98.93%, and 99.68%, respectively. 6,10,14-Trimethyl-2-pentadecanone, hexadecanoic acid, methyl ester, hexadecanoic acid, 8,11-octadecadienoic acid, methyl ester, and 9,12,15-octadecatrien-1-ol were the major constituents of the extracts. The antidiabete activity was assayed in vitro by against protein tyrosine phosphatase 1B (PTP1B). The results showed that the HE exhibited the best in vitro inhibitory enzyme activity against PTP1B, which holds a good potential for treating diabetes and obesity.
Summary
Rapid high-performance liquid chromatographic methods with evaporative light scattering detection (HPLC-ELSD) and electrospray ionization multistage mass spectrometry (HPLC-ESI-MSn) have been established and validated for simultaneous qualitative and quantitative analysis of eight steroidal saponins in ten batches of Gongxuening capsule (GXN), a widely commercially available traditional Chinese preparation. The optimum chromatographic conditions entailed use of a Kromasil C18 column with acetonitrile-water (30:70 to 62:38, υ/υ) as mobile phase at a flow rate of 1.0 mL min−1. The drift tube temperature of the ELSD was 102°C and the nebulizing gas flow rate was 2.8 L min−1. Separation was successfully achieved within 25 min. LC-ESI-MSn was used for unequivocal identification of the constituents of the samples by comparison with reference compounds. The assay was fully validated for precision, repeatability, accuracy, and stability, then successfully applied to quantification of the eight compounds in samples. The method could be effective for evaluation of the clinical safety and efficacy of GXN.