Search Results

You are looking at 11 - 20 of 29 items for

  • Author or Editor: Ray Frost x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Three halotrichites namely halotrichite Fe2&SO4·Al2(SO4)3·22H2O, apjohnite Mn2&SO4·Al2(SO4)3·22H2O and dietrichite ZnSO4·Al2(SO4)3·22H2O, were analysed by both dynamic, controlled rate thermogravimetric and differential thermogravimetric analysis. Because of the time limitation in the controlled rate experiment of 900 min, two experiments were undertaken (a) from ambient to 430 °C and (b) from 430 to 980 °C. For halotrichite in the dynamic experiment mass losses due to dehydration were observed at 80, 102, 319 and 343 °C. Three higher temperature mass losses occurred at 621, 750 and 805 °C. In the controlled rate thermal analysis experiment two isothermal dehydration steps are observed at 82 and 97 °C followed by a non-isothermal dehydration step at 328 °C. For apjohnite in the dynamic experiment mass losses due to dehydration were observed at 99, 116, 256, 271 and 304 °C. Two higher temperature mass losses occurred at 781 and 922 °C. In the controlled rate thermal analysis experiment three isothermal dehydration steps are observed at 57, 77 and 183 °C followed by a non-isothermal dehydration step at 294 °C. For dietrichite in the dynamic experiment mass losses due to dehydration were observed at 115, 173, 251, 276 and 342 °C. One higher temperature mass loss occurred at 746 °C. In the controlled rate thermal analysis experiment two isothermal dehydration steps are observed at 78 and 102 °C followed by three non-isothermal dehydration steps at 228, 243 and 323 °C. In the CRTA experiment a long isothermal step at 636 °C attributed to de-sulphation is observed.

Restricted access

Abstract  

Insight into the unique structure of layered double hydroxides (LDHs) has been obtained using a combination of X-ray diffraction and thermal analysis. Indium containing hydrotalcites of formula Mg4In2(CO3)(OH)12·4H2O (2:1 In-LDH) through to Mg8In2(CO3)(OH)18·4H2O (4:1 In-LDH) with variation in the Mg:In ratio have been successfully synthesised. The d(003) spacing varied from 7.83 Å for the 2:1 LDH to 8.15 Å for the 3:1 indium containing LDH. Distinct mass loss steps attributed to dehydration, dehydroxylation and decarbonation are observed for the indium containing hydrotalcite. Dehydration occurs over the temperature range ambient to 205 °C. Dehydroxylation takes place in a series of steps over the 238–277 °C temperature range. Decarbonation occurs between 763 and 795 °C. The dehydroxylation and decarbonation steps depend upon the Mg:In ratio. The formation of indium containing hydrotalcites and their thermal activation provides a method for the synthesis of indium oxide-based catalysts.

Restricted access

Abstract  

The hydrotalcite based upon manganese known as charmarite Mn4Al2(OH)12CO3·3H2O has been synthesised with different Mn/Al ratios from 4:1 to 2:1. Impurities of manganese oxide, rhodochrosite and bayerite at low concentrations were also produced during the synthesis. The thermal stability of charmarite was investigated using thermogravimetry. The manganese hydrotalcite decomposed in stages with mass loss steps at 211, 305 and 793 °C. The product of the thermal decomposition was amorphous material mixed with manganese oxide. A comparison is made with the thermal decomposition of the Mg/Al hydrotalcite. It is concluded that the synthetic charmarite is slightly less stable than hydrotalcite.

Restricted access

Abstract  

Hydrotalcites based upon gallium as a replacement for aluminium in hydrotalcite over a Mg/Al ratio of 2:1 to 4:1 were synthesised. The d(003) spacing varied from 7.83 Å for the 2:1 hydrotalcite to 8.15 Å for the 3:1 gallium containing hydrotalcite. A comparison is made with the Mg/Al hydrotalcite in which the d(003) spacing for the Mg/Al hydrotalcite varied from 7.62 Å for the 2:1 Mg hydrotalcite to 7.98 Å for the 4:1 hydrotalcite. The thermal stability of the gallium containing hydrotalcite was determined using thermogravimetric analysis. Four mass loss steps at 77, 263–280, 485 and 828 °C with mass losses of 10.23, 21.55, 5.20 and 7.58% are attributed to dehydration, dehydroxylation and decarbonation. The thermal stability of the gallium containing hydrotalcite is slightly less than the aluminium hydrotalcite.

Restricted access

Abstract  

Dynamic and controlled rate thermal analysis has been used to characterise synthesised jarosites of formula [M(Fe)3(SO4)2(OH)6] where M is Pb, Ag or Pb–Ag mixtures. Thermal decomposition occurs in a series of steps. (a) dehydration, (b) well defined dehydroxylation and (c) desulphation. CRTA offers a better resolution and a more detailed interpretation of water formation processes via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of water formation reveal the subtle nature of dehydration and dehydroxylation. CRTA offers a better resolution and a more detailed interpretation of the decomposition processes via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of non-isothermal nature reveal separation of the dehydroxylation steps, since in these cases a higher energy (higher temperature) is needed to drive out gaseous decomposition products through a decreasing space at a constant, pre-set rate.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors:
V. Drebushchak
,
Ray Frost
,
Marek Liška
, and
José Rodríguez Añón
Restricted access

Abstract

Thermogravimetry combined with evolved gas mass spectrometry has been used to characterise the mineral ardealite and to ascertain the thermal stability of this ‘cave’ mineral. The mineral ardealite Ca2(HPO4)(SO4)·4H2O is formed through the reaction of calcite with bat guano. The mineral shows disorder, and the composition varies depending on the origin of the mineral. Thermal analysis shows that the mineral starts to decompose over the temperature range of 100–150 °C with some loss of water. The critical temperature for water loss is around 215 °C, and above this temperature, the mineral structure is altered. It is concluded that the mineral starts to decompose at 125 °C, with all waters of hydration being lost after 226 °C. Some loss of sulphate occurs over a broad temperature range centred upon 565 °C. The final decomposition temperature is 823 °C with loss of the sulphate and phosphate anions.

Restricted access

Thermal Stability of newberyite Mg(PO3OH)·3H2O

A cave mineral from Skipton Lava Tubes, Victoria, Australia

Journal of Thermal Analysis and Calorimetry
Authors:
Ray L. Frost
,
Sara J. Palmer
, and
Ross E. Pogson

Abstract

The mineral newberyite Mg(PO3OH)·3H2O is a mineral that has been found in caves such as the Skipton Lava Tubes (SW of Ballarat, Victoria, Australia), Moorba Cave, (Jurien Bay, Western Australia) and in the Petrogale Cave (Madura, Eucla, Western Australia). Since these minerals contain water, the minerals lend themselves to thermal analysis. The mineral newberyite is found to decompose at 145 °C with a water loss of 31.96%, a result which is very close to the theoretical value. The result shows that the mineral is not stable in caves where the temperature exceeds this value. The implication of this result rests with the removal of kidney stones, which have the same composition as newberyite. Point heating focussing on the kidney stone results in the destruction of the kidney stone.

Restricted access

Thermal stability of crandallite CaAl3(PO4)2(OH)5·(H2O)

A ‘Cave’ mineral from the Jenolan Caves

Journal of Thermal Analysis and Calorimetry
Authors:
Ray L. Frost
,
Sara J. Palmer
, and
Ross E. Pogson

Abstract

Thermogravimetry combined with evolved gas mass spectrometry has been used to characterise the mineral crandallite CaAl3(PO4)2(OH)5·(H2O) and to ascertain the thermal stability of this ‘cave’ mineral. X-ray diffraction proves the presence of the mineral and identifies the products of the thermal decomposition. The mineral crandallite is formed through the reaction of calcite with bat guano. Thermal analysis shows that the mineral starts to decompose through dehydration at low temperatures at around 139 °C and the dehydroxylation occurs over the temperature range 200–700 °C with loss of the OH units. The critical temperature for OH loss is around 416 °C and above this temperature the mineral structure is altered. Some minor loss of carbonate impurity occurs at 788 °C. This study shows the mineral is unstable above 139 °C. This temperature is well above the temperature in the caves of 15 °C maximum. A chemical reaction for the synthesis of crandallite is offered and the mechanism for the thermal decomposition is given.

Restricted access

Abstract

The aluminate hydrotalcites are proposed to have either of the following formulas: Mg4Al2(OH)12(CO3 2−xH2O or Mg4Al2(OH)12(CO3 2−, SO4 2−xH2O. A pure hydrotalcite phase forms when magnesium chloride and aluminate solutions are mixed at a 1:1 volumetric ratio at pH 14. The synthesis of the aluminate hydrotalcites using seawater results in the formation of an impurity phase bayerite. Two decomposition steps have been identified for the aluminate hydrotalcites: (1) removal of interlayer water (230 °C) and (2) simultaneous dehydroxylation and decarbonation (330 °C). The dehydration of bayerite was observed at 250 °C. X-ray diffraction techniques determined that the synthesis of aluminate hydrotalcite with seawater and a volumetric ratio of 4.5 results in very disordered structures. This was shown by a reduction in the mass loss associated with the removal of interlayer water due to the reduction of interlayer sites caused by the misalignment of the metal-hydroxyl layers.

Restricted access