Search Results

You are looking at 11 - 20 of 38 items for

  • Author or Editor: Stefan Bereswill x
  • Refine by Access: All Content x
Clear All Modify Search
European Journal of Microbiology and Immunology
Authors: Markus M. Heimesaat, Marie E. Alutis, Ursula Grundmann, André Fischer, Ulf B. Göbel, and Stefan Bereswill

We have recently shown that, within 1 week following peroral Campylobacter jejuni infection, conventional infant mice develop self-limiting enteritis. We here investigated the role of IL-23, IL-22, and IL-18 during C. jejuni strain 81-176 infection of infant mice. The pathogen efficiently colonized the intestines of IL-18−/− mice only, but did not translocate to extra-intestinal compartments. At day 13 postinfection (p.i.), IL-22−/− mice displayed lower colonic epithelial apoptotic cell numbers as compared to wildtype mice, whereas, conversely, colonic proliferating cells increased in infected IL-22−/− and IL-18−/− mice. At day 6 p.i., increases in neutrophils, T and B lymphocytes were less pronounced in gene-deficient mice, whereas regulatory T cell numbers were lower in IL-23p19−/− and IL-22−/− as compared to wildtype mice, which was accompanied by increased colonic IL-10 levels in the latter. Until then, colonic pro-inflammatory cytokines including TNF, IFN-γ, IL-6, and MCP-1 increased in IL-23p19−/− mice, whereas IL-18−/− mice exhibited decreased cytokine levels and lower colonic numbers of T and B cell as well as of neutrophils, macrophages, and monocytes as compared to wildtype controls. In conclusion, IL-23, IL-22, and IL-18 are differentially involved in mediating C. jejuni-induced immunopathology of conventional infant mice.

Open access

Within 1 week following peroral Campylobacter jejuni infection, infant mice develop acute enteritis resolving thereafter. We here assessed colonic expression profiles of mediators belonging to the IL-23/IL-22/IL-18 axis and of matrix-degrading gelatinases MMP-2 and MMP-9 at day 6 post C. jejuni strain 81-176 infection. Whereas the pathogen readily colonized the intestines of infant IL-18−/− mice only, colonic mucin-2 mRNA, a pivotal mucus constituent, was downregulated in IL-22−/− mice and accompanied by increased expression of pro-inflammatory cytokines including IFN-γ, TNF, IL-17A, and IL-1β. Furthermore, in both naive and infected IL-22−/− mice, colonic expression of IL-23p19 and IL-18 was lower as compared to wildtype mice, whereas, conversely, colonic IL-22 mRNA levels were lower in IL-18−/− and colonic IL-18 expression lower in IL-23p19−/− as compared to wildtype mice. Moreover, colonic expression of MMP-2 and MMP-9 and their endogenous inhibitor TIMP-1 were lower in IL-22−/− as compared to wildtype mice at day 6 postinfection. In conclusion, mediators belonging of the IL-23/IL-22/IL-18 axis as well as the gelatinases MMP-2 and MMP-9 are involved in mediating campylobacteriosis of infant mice in a differentially regulated fashion.

Open access
European Journal of Microbiology and Immunology
Authors: Markus M. Heimesaat, André Fischer, Anja A. Kühl, Ulf B. Göbel, Illana Gozes, and Stefan Bereswill

The octapeptide NAP has been shown to exert neuroprotective properties. Here, we investigated potential anti-inflammatory effects of NAP in an acute ileitis model. To address this, C57BL/6j mice were perorally infected with Toxoplasma gondii (day 0). Within 1 week postinfection (p.i.), placebo (PLC)-treated mice developed acute ileitis due to Th1-type immune responses. Mice that were subjected to intraperitoneal NAP treatment from day 1 until day 6 p.i., however, developed less distinct macroscopic and microscopic disease as indicated by less body weight loss, less distinct histopathological ileal changes, and lower ileal apoptotic, but higher proliferating cell numbers, less abundance of neutrophils, macrophages, monocytes, and T lymphocytes, but higher numbers of regulatory T cells in the ileal mucosa and lamina propria, and lower concentrations of pro-inflammatory mediators in the ilea as compared to PLC controls at day 7 p.i. Remarkably, NAP-mediated anti-inflammatory effects could also be observed in extra-intestinal compartments including liver and spleen. Strikingly, lower MCP-1, TNF, and IL-12p70 serum concentrations in NAP as compared to PLC-treated mice at day 7 p.i. indicate a pronounced systemic anti-inflammatory effect of NAP in acute ileitis. These findings provide first evidence for NAP as a potential novel treatment option in intestinal inflammation.

Open access
European Journal of Microbiology and Immunology
Authors: Kerstin A. Heyl, André Fischer, Ulf B. Göbel, Peter Henklein, Markus M. Heimesaat, and Stefan Bereswill

Abstract

Helicobacter pylori infection is the most common cause of gastroduodenal ulcerations worldwide. Adaptation of H. pylori to the acidic environment is mediated by urease splitting urea into carbon dioxide and ammonia. Whereas neutralization of acid by ammonia is essential for gastric H. pylori colonization, the catalytic activity of urease is mediated by nickel ions. Therefore, nickel uptake and metabolism play key roles in H. pylori infection and urease is considered first line target for drug development and vaccination. Since nickel binding within H. pylori cells is mediated by the Histidine-rich protein designated Hpn, we investigated whether nickel binding by a synthetic Hpn is capable of abrogating urease activity of live H. pylori in liquid cultures. Supplementation of growth media with synthetic Hpn completely inhibited urease acitivity in live cells, indicating that H. pylori nickel uptake is effectively blocked by Hpn. Thus, nickel chelation by Hpn is stronger than nickel uptake of H. pylori offering therapeutic use of Hpn. Although the nickel binding of Hpn was confirmed by binding assays in vitro, its use in anti-H. pylori directed strategy will further need to be adapted to the gastric environment given that protons interfere with nickel binding and Hpn is degraded by pepsin.

Restricted access

Arcobacter butzleri causes sporadic cases of gastroenteritis, but the underlying immunopathological mechanisms of infection are unknown. We have recently demonstrated that A. butzleri-infected gnotobiotic IL-10−/− mice were clinically unaffected but exhibited intestinal and systemic inflammatory immune responses. For the first time, we here investigated the role of Toll-like receptor (TLR)-4, the main receptor for lipopolysaccharide and lipooligosaccharide of Gram-negative bacteria, in murine arcobacteriosis. Gnotobiotic TLR-4/IL-10-double deficient (TLR-4−/− IL-10−/−) and IL-10−/− control mice generated by broad-spectrum antibiotics were perorally infected with A. butzleri. Until day 16 postinfection, mice of either genotype were stably colonized with the pathogen, but fecal bacterial loads were approximately 0.5–2.0 log lower in TLR-4−/− IL-10−/− as compared to IL-10−/− mice. A. butzleri-infected TLR-4−/− IL-10−/− mice displayed less pronounced colonic apoptosis accompanied by lower numbers of macrophages and monocytes, T lymphocytes, regulatory T-cells, and B lymphocytes within the colonic mucosa and lamina propria as compared to IL-10−/− mice. Furthermore, colonic concentrations of nitric oxide, TNF, IL-6, MCP-1, and, remarkably, IFN and IL-12p70 serum levels were lower in A. butzleri-infected TLR-4−/− IL-10−/− versus IL-10−/− mice. In conclusion, TLR-4 is involved in mediating murine A. butzleri infection. Further studies are needed to investigate the molecular mechanisms underlying Arcobacter—host interactions in more detail.

Open access

Host immune responses are pivotal for combating enteropathogenic infections. We here assessed the impact of the innate receptor nucleotide oligomerization domain protein 2 (NOD2) in murine Campylobacter jejuni-infection. Conventionally colonized IL-10−/− mice lacking NOD2 and IL-10−/− controls were perorally challenged with C. jejuni strain 81-176 and displayed comparable pathogenic colonization of intestines until day 14 postinfection (p.i.). Whereas overall intestinal microbiota compositions were comparable in naive mice, NOD2−/− IL-10−/− mice exhibited less fecal bifidobacteria and lactobacilli than IL-10−/− counterparts after infection. Interestingly, NOD2−/− IL-10−/− mice were clinically more compromised during the early phase of infection, whereas, conversely, IL-10−/− animals exhibited more frequently bloody feces lateron. While colonic apoptotic cell and T lymphocyte numbers were comparable in either C. jejuni-infected mice, B lymphocytes were lower in the colon of infected NOD2−/− IL-10−/− mice versus controls. At day 14 p.i., colonic TNF and IL-23p19 mRNA levels were upregulated in NOD2−/− IL-10−/− mice only. Translocation rates of intestinal commensals to mesenteric lymphnodes and extra-intestinal compartments including liver and kidney were comparable, whereas viable bacteria were more frequently detected in spleens derived from IL-10−/− as compared to NOD2−/− IL-10−/− mice. In conclusion, NOD2 is involved during C. jejuni infection in conventionally colonized IL-10−/− mice in a time-dependent manner.

Open access

Within 1 week following high-dose Toxoplasma gondii infection, mice develop lethal necrotizing ileitis. However, data from a subacute T. gondii-induced ileitis model are scarce. Therefore, mice harboring a human gut microbiota were perorally infected with one cyst of T. gondii. Within 9 days post-infection, the intestinal microbiota composition shifted towards higher loads of commensal enterobacteria and enterococci. Following T. gondii infection, mice were clinically only mildly affected, whereas ≈60% of mice displayed fecal blood and mild-to-moderate ileal histopathological changes. Intestinal inflammation was further characterized by increased apoptotic intestinal epithelial cells, which were accompanied by elevated proliferating gut epithelial cell numbers. As compared to naive controls, infected mice displayed elevated numbers of intestinal T lymphocytes and regulatory T-cells and increased pro-inflammatory mediator secretion. Remarkably, T. gondii-induced apoptotic and pro-inflammatory immune responses were not restricted to the gut, but could also be observed in extra-intestinal compartments including kidney, liver, and lung. Strikingly, low-dose T. gondii infection resulted in increased serum levels of pro- and anti-inflammatory cytokines. In conclusion, the here presented subacute ileitis model following peroral low-dose T. gondii infection of humanized mice allows for detailed investigations of the molecular mechanism underlying the “ménage à trois” of pathogens, human gut microbiota, and immunity.

Open access

Secondary abiotic mice generated by broad-spectrum antibiotic treatment provide a valuable tool for association studies with microbiota derived from different vertebrate hosts. We here generated human microbiota-associated (hma) mice by human fecal microbiota transplantation of secondary abiotic mice and performed a comprehensive survey of the intestinal microbiota dynamics in offspring of hma mice over 18 weeks following weaning as compared to their mothers applying both cultural and molecular methods. Mice were maintained under standard hygienic conditions with open cages, handled under aseptic conditions, and fed autoclaved chow and water. Within 1 week post weaning, fecal loads of commensal enterobacteria and enterococci had decreased, whereas obligate anaerobic bacteria such as Bacteroides/Prevotella species and clostridia were stably colonizing the intestines of hma offspring at high loads. Lactobacilli numbers were successively increasing until 18 weeks post weaning in both hma offspring and mothers, whereas by then, bifidobacteria were virtually undetectable in the former only. Interestingly, fecal lactobacilli and bifidobacteria were higher in mothers as compared to their offspring at 5 and 18 weeks post weaning. We conclude that the intestinal microbiota composition changes in offspring of hma mice, but also their mothers over time particularly affecting aerobic and microaerobic species.

Open access
European Journal of Microbiology and Immunology
Authors: Markus M. Heimesaat, Gül Karadas, André Fischer, Ulf B. Göbel, Thomas Alter, Stefan Bereswill, and Greta Gölz

Sporadic cases of gastroenteritis have been attributed to Arcobacter butzleri infection, but information about the underlying immunopathological mechanisms is scarce. We have recently shown that experimental A. butzleri infection induces intestinal, extraintestinal and systemic immune responses in gnotobiotic IL-10−/− mice. The aim of the present study was to investigate the immunopathological role of Toll-like Receptor-4, the receptor for lipopolysaccharide and lipooligosaccharide of Gram-negative bacteria, during murine A. butzleri infection. To address this, gnotobiotic IL-10−/− mice lacking TLR-4 were generated by broadspectrum antibiotic treatment and perorally infected with two different A. butzleri strains isolated from a patient (CCUG 30485) or fresh chicken meat (C1), respectively. Bacteria of either strain stably colonized the ilea of mice irrespective of their genotype at days 6 and 16 postinfection. As compared to IL-10−/− control animals, TLR-4−/− IL-10−/− mice were protected from A. butzleri-induced ileal apoptosis, from ileal influx of adaptive immune cells including T lymphocytes, regulatory T-cells and B lymphocytes, and from increased ileal IFN secretion. Given that TLR-4-signaling is essential for A. butzleri-induced intestinal inflammation, we conclude that bacterial lipooligosaccharide or lipopolysaccharide compounds aggravate intestinal inflammation and may thus represent major virulence factors of Arcobacter. Future studies need to further unravel the molecular mechanisms of TLR-4-mediated A. butzleri-host interactions.

Open access
European Journal of Microbiology and Immunology
Authors: Isabel Stephany-Brassesco, Stefan Bereswill, Markus M. Heimesaat, and Matthias F. Melzig

Antibiotic resistance of Streptococcus pneumoniae has risen to worrying levels in the past few decades worldwide, and subsequently, effective treatment of respiratory tract infections has become even more challenging. While the need to develop new strategies to combat bacterial infections is urgent, novel antibiotic compounds are no longer a priority of the pharmaceutical industry. However, resistance-modifying agents can alleviate the spread of antibiotic resistance and render existing antibiotics effective again. In the present study, we aimed to determine the combinatory antimicrobial effects of the commercial herbal product Cefabronchin® and antibiotic compounds, such as amoxicillin and clarithromycin, on 6 clinical isolates of S. pneumoniae. Therefore, the minimal inhibitory concentration (MIC) of each agent before and after adding Cefabronchin® at different concentrations was determined by applying the checkerboard method. Sub-inhibitory concentrations of the added Cefabronchin® were found to reduce the MIC down to between 3.4% and 29.2% of the amoxicillin MIC and down to between 10.4% and 45.8% of the clarithromycin MIC in all 6 strains. In conclusion, this study provides evidence for the improved antimicrobial effects of commonly used antibiotics in combination with Cefabronchin® in order to combat infections with antibiotic-resistant S. pneumoniae strains.

Open access