Search Results

You are looking at 11 - 20 of 139 items for

  • Author or Editor: Y. Chen x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

A series of Zn–Al hydrotalcites with Zn/Al molar ratios of 1, 2, 3 and 6 were prepared by co-precipitation method. TG-DTG results showed that the hydrotalcites decompose in two stages, corresponding to the two endothermic peaks around 180 and 220°C. After calcination at 400°C, the samples were converted into Zn–Al mixed oxides with the only XRD pattern of ZnO, except for the sample with the ratio of 6. The Zn–Al mixed oxides possess similar surface acidity revealed by microcalorimetric adsorption of NH3. The basicity of the samples increases with the order: ZnO>6Zn/Al>1Zn/Al>Al2O3.

Restricted access

Abstact  

The reduction process of silica supported cobalt catalyst was studied by thermal analysis technique. The reduction of the catalyst proceeds in two steps:

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$Co_3 O_4 + H_2 \to 3CoO + H_2 O, 3CoO + 3H_2 \to 3Co + 3H_2 O$$ \end{document}
which was validated by the TPR and in-situ XRD experiments. The kinetic parameters of the reduction process were obtained with a comparative method. For the first step, the activation energy, E a, and the pre-exponential factor, A, were found to be 104.35 kJ mol−1 and 1.18�106∼2.45�109 s−1 respectively. The kinetic model was random nucleation and growth and the most probable mechanism function was found to be f(α)=3/2(1−α)[−ln(1−α)]1/3 or in the integral form: g(α)=[−ln(1−α)]2/3. For the second step, the activation energy, E a, and the pre-exponential factor, A, were found to be 118.20 kJ mol−1 and 1.75�107∼2.45 � 109s−1 respectively. The kinetic model was a second order reaction and the probable mechanism function was f(α)=(1−α)2 or in the integral form: g(α)=[1−α]−1−1.

Restricted access

Rht18, derived from Triticum durum (tetraploid) wheat, is classified as a gibberellic acid (GA)-responsive dwarfing gene. Prior to this study, the responses of Rht18 to exogenous GA on agronomic traits in hexaploid wheat were still unknown. The response of Rht18 to exogenous GA3 on coleoptile length, plant height, yield components and other agronomic traits were investigated using F4:5 and F5:6 hexaploid dwarf lines with Rht18 derived from two crosses between the tetraploid donor Icaro and tall Chinese winter wheat cultivars, Xifeng 20 and Jinmai 47. Applications of exogenous GA3 significantly increased coleoptile length in both lines and their tall parents. Plant height was significantly increased by 21.3 and 10.7% in the GA3-treated dwarf lines of Xifeng 20 and Jinmai 47, respectively. Compared to the untreated dwarf lines, the partitioning of dry matter to ears at anthesis was significantly decreased while the partitioning of dry matter to stems was significantly increased in the GA3-treated dwarf lines. There were no obvious changes in plant height and dry matter partitioning in the GA3-treated tall parents. Exogenous GA3 significantly decreased grain number spike–1 while it increased 1000-kernel weight in both the dwarf lines and tall parents. Thus, applications of exogenous GA3 restored plant height and other agronomic traits of Rht18 dwarf lines to the levels of the tall parents. This study indicated that Rht18 dwarf mutants are GA-deficient lines with impaired GA biosynthesis.

Restricted access

Summary

A rapid, simple, and practical high-performance liquid chromatographic method (HPLC) was developed and validated for the simultaneous determination of norephedrine (NME), norpseudoephedrine (NMP), ephedrine (E), pseudoephedrine (PE), and methylephedrine (ME) in traditional Chinese medicines (TCM) which contained Ephedrae Herba (Ephedra). This analysis could be accomplished within 12.5 min with an Alltima Phenyl Column by isocratic elution using a mixture of KH2PO4 (20 mM)-acetonitrile (96:4, v/v) as the mobile phase at a flow-rate of 0.6 mL min−1 and a wavelength of 210 nm. This method was successfully applied to quantify ephedra alkaloids in both Ma-xing-gan-shi decoction and Ephedra decoction. The concentration of total ephedra alkaloids (4.62 mg mL−1) in Ma-xing-gan-shi decoction was much lower than that (7.10 mg mL−1) in Ephedra decoction. Furthermore, the concentration of NME, NMP, E, PE, and ME was significantly lower in Ma-xing-gan-shi decoction than that in Ephedra decoction, respectively. The method was easily acceptable and would be popular with most analytical laboratories.

Open access

Summary

Yanghuo Sanqi tablet (YST), combined prescription mainly derived from the leaves of Herba epimedii and the roots of Panax notoginseng, is a traditional Chinese medicine (TCM). Flavonoids (icarrin, epimedin A, epimedin B, epimedin C, and baohuoside I) and saponins (notoginsenoside R1, ginsenoside Rgl, and ginsenoside Rbl) are considered as the main bioactive compounds of YST. However, there is no report on quality control of TCMs by simultaneous determination of above-mentioned flavonoids and saponins so far. In this work, for the first time, a high-performance liquid chromatography-diode array detector-evaporative light scattering detector (HPLC-DAD-ELSD) method was developed to evaluate the quality of YST through a simultaneous determination of five major active flavonoids and three main saponins. Optimum separations were obtained with a Zorbax SB-C18 column by gradient elution with acetonitrile-water as the mobile phase. The drift tube temperature of ELSD was set at 105 °C, and the nebulizing gas flow rate was 2.5 L min−1. The fully validated method was successfully applied to quantify the eight bioactive components in three lot products. This simple, low-cost, and reliable HPLC-DAD-ELSD method provided a new basis for assessing the quality of traditional Chinese medicinal compound preparations (TCMCPs) consisting of many bioactive components.

Open access

Summary

Yanghuo Sanqi tablet (YST), combined prescription mainly derived from the leaves of herba epimedii and the roots of Panax notoginseng, is a traditional Chinese medicine (TCM). Flavonoids (icarrin, epimedin A, epimedin B, epimedin C, and baohuoside I) and saponins (notoginsenoside R1, ginsenoside Rgl, and ginsenoside Rbl) are considered as the main bioactive compounds of YST. However, there is no report on quality control of TCMs by simultaneous determination of above-mentioned flavonoids and saponins so far. In this work, for the first time, a high-performance liquid chromatography-diode array detector-evaporative light-scattering detector (HPLC-DAD-ELSD) method was developed to evaluate the quality of YST through a simultaneous determination of five major active flavonoids and three main saponins. Optimum separations were obtained with a Zorbax SB-C18 column by gradient elution with acetonitrile-water as the mobile phase. The drift tube temperature of ELSD was set at 105 °C, and the nebulizing gas flow rate was 2.5 L min−1. The fully validated method was successfully applied to quantify the eight bioactive components in three lot products. This simple, low-cost, and reliable HPLC-DAD-ELSD method provided a new basis for assessing the quality of traditional Chinese medicinal compound preparations (TCMCPs) consisting of many bioactive components.

Open access

Summary

A high-performance liquid chromatographic (HPLC) method coupled with photodiode array (PDA) detection has been developed and validated for simultaneous analysis of six active components (syringin, hyperoside, baicalin, quercetin, baicalein, and farrerol) of the Chinese medicinal preparation Qin-Bao-Hong antitussive tablet. The optimum conditions for separation were achieved on a 3.9 mm × 150 mm i.d., 5-μm particle, C18 column with a linear mobile phase gradient prepared from acetonitrile and 1% acetic acid at a flow rate of 1.0 mL min−1. Because of the different UV characteristics of these compounds, four detection wavelengths were used for the quantitative analysis (265 nm for syringin, 256 nm for hyperoside and quercetin, 277 nm for baicalin and baicalein, and 296 nm for farrerol). For all the analytes a good linear regression relationship (r > 0.999) was obtained between peak area and concentration over a relatively wide range. The method was validated for repeatability, precision, stability, accuracy, selectivity, and robustness. The validated method was successfully applied to simultaneous analysis of these active components in Qin-Bao-Hong antitussive tablet from different production batches.

Full access

Summary

A novel liquid-phase microextraction (LPME) technique, based on a hollow fiber (HF), in conjunction with high-performance liquid chromatography, has been developed for analysis of melamine in milk products. Melamine was extracted directly from milk products by use of a hollow-fiber membrane filled with organic solvent. HFLPME conditions, for example pH, extraction solvent, temperature, stirring rate, and extraction time were optimized. The best extraction efficiency of melamine was achieved under the conditions: pH 9.5, 35 μL n-octanol as extraction solvent, temperature 55°C, stirring rate 300 rpm, and extraction time 30 min. The HF-LPME technique resulted in a preconcentration ratio of 29-fold. Baseline chromatographic separation of melamine was achieved on a C18 column with 96:4 (v/v) 0.02 mol L−1 ammonium sulfate-methanol as isocratic mobile phase. The linearity of the method ranged from 1.0 to 100.0 μg mL−1, correlation coefficient 0.9994. The limit of detection by use of HF-LPME was 0.021 μg mL−1 at a signal-to-noise ratio of 3. The optimized HF-LPME technique was successfully applied to the analysis of melamine in milk products collected from different commodity manufacturing units.

Open access

This study aims to develop and validate a high-performance size-exclusion chromatography (HPSEC) method to determine the amount of polymer in cefmetazole sodium for injection and to compare this method with gel chromatography. A Zenix SEC-150 column was used with the mobile phase of phosphate buffer solution (pH 7.0; 0.01 M)—acetonitrile (90:10 v/v) at a flow rate of 0.8 mL min−1 and a detection wavelength of 240 nm. The polymer was quantified by an external standard method with self-control, and the amount was expressed by the percentage of cefmetazole. The HPSEC method was validated for specificity, linearity, and precision. The chromatographic conditions, chromatographic performances, sensitivity, linearity, and precision of the developed HPSEC method and gel chromatography were compared, and both methods were subsequently used to determine the amount of polymer from seven batches of samples. The HPSEC method was fully validated. The time of isocratic elution for sample assay was less than 14 min. The results of comparison indicate that the developed HPSEC method was superior to gel chromatography. The Student t test results also showed significant difference in the amount of polymer from the samples obtained by the two methods. Thus, the HPSEC method with two obvious advantages, the superior sensitivity and a shorter analysis time, is more suitable for determination of polymer amount in cefmetazole sodium for injection to control the quality of the product.

Open access