Search Results

You are looking at 11 - 20 of 29 items for

  • Author or Editor: Y. Y. Huang x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Organic peroxides have caused many serious explosions and fires that were promoted by thermal instability, chemical pollutants, and even mechanical shock. Cumene hydroperoxide (CHP) has been employed in polymerization and for producing phenol and dicumyl peroxide (DCPO). Differential scanning calorimetry (DSC) has been used to assess the thermal hazards associated with CHP contacting sodium hydroxide (NaOH). Thermokinetic parameters, such as exothermic onset temperature (T 0), peak temperature (T max), and enthalpy (ΔH) were obtained. Experimental data were obtained using DSC and curve fitting using thermal safety software (TSS) was employed to obtain the kinetic parameters. Isothermal microcalorimetry (thermal activity monitor, TAM) was used to investigate the thermal hazards associated with storing of CHP and CHP mixed with NaOH under isothermal conditions. TAM showed that in the temperature range from 70 to 90°C an autocatalytic reaction occurs. This was apparent in the thermal curves. Depending on the operating conditions, NaOH may be one of the chemicals or catalysts incompatible with CHP. When CHP was mixed with NaOH, the T 0 is lower and reactions become more complex than those associated with assessment of the decomposition of the pure peroxide. The data by curve fitting indicated that the activation energy (E a) for the induced decomposition is smaller than that for decomposition of CHP in the absence of hydroxide.

Restricted access

Abstract  

The polymerization mechanisms of styrene and various derivatives by α-methylstyrene (AMS) and trans-β-methylstyrene (TBMS) were evaluated. Experiments were carried out for dimerization identification and thermal polymerization estimation by differential scanning calorimetry (DSC), thermal activity monitor (TAM) and Fourier transform infrared absorption spectrophotometer (FTIR). The results show that, under temperature ranges of 60–190 and 50–170°C, AMS and TBMS performed dimerization by benzene ring and ethylene double bond, respectively. AMS and TBMS would form unsaturated dimers, saturated dimers and trimers, etc., during the period of thermal polymerization. Through this study, one can estimate possible intermediates of the polymerization process for the monomer of interest in the petrochemical industry.

Restricted access

Abstract  

This study was performed under the joint TRMC/INER program for the determination of low level85Kr and133Xe concentrations in the environmental air samples. Based on cryogenic adsorption of krypton and xenon on charcoal followed by chromatographic separation from other gases, the85Kr and133Xe recovered from 200 liters of atmospheric air can be determined by either on-line gas flow proportional counter or liquid scintillation counting. The recovery yields of krypton and xenon examined by using85Kr and133Xe tracers were nearly 100%. The minimum detectable activity of85Kr and133Xe by gas flow proportional counting is about 7.40 Bq. The method is satisfactory for environmental monitoring applications under abnormal conditions of nuclear facilities. However, for lower level environmental85Kr and133Xe measurements, the liquid scintillation counting method can be applied due to their extremely low detection limits (i.e. 0.107 Bq and 0.093 Bq for85Kr and133Xe, respectively). Using this method, the measurable limits of concentrations are 0.535 Bq/m3 and 0.466 Bq/m3 for85Kr and133Xe, respectively.

Restricted access

The most abundant seed storage proteins of wheat are gliadins and glutenins. Gliadins, including α/β, γ and ω types, are normally monomeric proteins and account for about 50% of the gluten proteins. In this study, 55 sequences of γ -gliadin genes were obtained from species of Sitopsis section, the deduced B genome donors of wheat. Despite the high sequence similarities to the known γ -gliadin genes, extensive variations were also found. Using the extensive sequence information deposited in database and obtained in this study, a comprehensive classification of the γ -gliadin multigene families were performed based on the primary structures and phylogenic analysis. All the γ -gliadin genes analyzed could be divided into 2 types, which contain 8 and 9 cysteines, respectively. Type I (with 8 cysteines) and type II (with 9 cysteines) are further classified to 7 and 4 groups, respectively, and several subgroups are also identified. The genes derived from A, B and D genomes of common wheat were clustered distinctly, indicating that there was apparent genomic specificity in γ -gliadins genes. Besides the high homology between γ -gliadin genes from Sitopsis species and B genome of wheat, some unique groups or subgroups were also identified in Sitopsis section, suggesting that it could be considered as a valuable source of γ -gliadin genes. The comparison of deduced primary structures of each group and/or subgroup was conducted, from which their evolution and quality properties were also speculated.

Restricted access

Polysaccharides from litchi (Litchi chinensis) seeds were isolated and purified using ion exchange column chromatography. Molecular weight distribution of polysaccharides and monosaccharides were detected. Preliminary structural characterisation of polysaccharides was conducted using infrared, nuclear magnetic, and other spectroscopy techniques in combination with methylation analysis. In vitro cell culture experiments were designed to detect the effects of polysaccharides on cell growth and cellular glucose consumption. We extracted and analysed three polysaccharides from litchi seed. Monosaccharide composition and infrared spectroscopy detection showed that the skeleton structure of polysaccharides consisted of glucose and mannose. Polysaccharides 1 and 2 are similar and have relatively high glucose content (around 70%); polysaccharide 3 has 39.17% glucose only but is rich in arabinose (about 21.03%). In a certain range of use (50~1000 μg ml–1), polysaccharides 1 and 2 have no significant impacts on cell growth, while polysaccharide 3 can promote proliferation to some extent. All three polysaccharides can promote in vitro cellular glucose consumption, especially polysaccharide 3, which shows the strongest promotion, a significant dose effect, and synergistic effect with insulin. The above results highlight important roles of litchi seed polysaccharides in promoting cell growth and validate litchi seed polysaccharides as potential drugs for hypoglycaemia.

Restricted access

Summary  

Iodine deficiency disorders (IDD) are one of most common nutritional deficiencies in the world. The nuclear analytical methods (ENAA, SRXRF and XRF) were employed to study the effect of iodine deficiency on the metal ion changes during the stage of brain development, combined with biochemical methods. The results show that the distributions of iron, copper and zinc varied to different extent in different brain regions and subcellular fractions of the ID rat brains. These distributional changes of trace elements might be associated with the brain damage caused by the iodine deficiency.

Restricted access

Abstract  

The characterization of different sized TiO2 (25 nm, 80 nm, and 155 nm) was carried out by transmission electron microscopy (TEM) and the micro-distributions of TiO2 in the olfactory bulb of mice after nasal inhalation were investigated by microbeam SRXRF mapping techniques. The results show that TiO2 particles can be translocated to the olfactory bulb through the olfactory nerve system after inhalation. The distributions of Fe, Cu, and Zn in the olfactory bulb were also studied.

Restricted access

High-yield common buckwheat ‘cv. Fengtian 1’ (FT1) and tartary buckwheat ‘cv. Jingqiao 2’ (JQ2) were selected to investigate the characteristics of the grain-filling process and starch accumulation of high-yield buckwheat. FT1 had an average yield that was 43.0% higher than that of the control ‘cv. Tongliaobendixiaoli’ (TLBDXL) in two growing seasons, while JQ2 had an average yield that was 27.3% higher than that of the control ‘cv. Chuanqiao 2’ (CQ2). The Richards equation was utilized to evaluate the grain-filling process of buckwheat. Both FT1 and JQ2 showed higher values of initial growth power and final grain weight and longer linear increase phase, compared with respective control. These values suggest that the higher initial increasing rate and the longer active growth period during grain filling play important roles to increase buckwheat yield. Similar patterns of starch, amylose and amylopectin accumulation were detected in common buckwheat, leading to similar concentration of each constituent at maturity in FT1 and TLBDXL. Tartary buckwheat showed an increasing accumulation pattern of amylose in developing seeds, which differed from that of starch and amylopectin. This pattern led to a significant difference of the concentrations of amylose and amylopectin at maturity between JQ2 and CQ2, the mechanisms of which remained unclear. Nevertheless, both FT1 and JQ2 showed increased starch, amylose, and amylopectin accumulation during the physiological maturity of grains. The results suggest that prolonging the active grain-filling period to increase carbohydrate partitioning from source to seed sink can be an effective strategy to improve buckwheat yield.

Restricted access

Bee pollen is a health food with a wide range of nutritional and therapeutic properties. However, the bioactive compounds of bee pollen have not been extensively revealed due to low efficacy in separation. High-speed counter-current chromatography (HSCCC) and solvent extraction were applied to separate tyrosinase inhibitors from camellia pollen in this study. The camellia pollen extracts prepared with petroleum ether, ethyl acetate, and n-BuOH have tyrosinase inhibitory activity. Acidic hydrolysis could promote the tyrosinase inhibitory activity of crude sample. Three fractions with tyrosinase inhibitory activity were separated from the hydrolysate by a one-step HSCCC procedure. Among the fractions, two chemicals were sufficiently purified and identified to be levulinic acid (LA) and 5-hydroxymethylfurfural (5-HMF). The recovery was 0.80 g kg−1 pollen for LA and 1.75 g kg−1 pollen for 5-HMF; and their purity was all over 98%. The study demonstrates that HSCCC method is powerful for preparative separation of tyrosinase inhibitors from camellia pollen.

Open access

Chemokine a nd antibody response profiles were investigated in children and adults with severe or uncomplicated Plasmodium falciparum malaria; the aim was to reveal which profiles are associated with severe disease, as often seen in nonimmune children, or with mild and uncomplicated disease, as seen in semi-immune adults. Blood samples were obtained from children under 5 years of age as well as adults with falciparum malaria. Classification of malaria was performed according to parasite densities and hemoglobin concentrations. Plasma levels of chemokines (IL-8, IP-10, MCP-4, TARC, PARC, MIP-1δ, eotaxins) were quantified, and antibody responses (IgE, IgG1, and IgG4) to P. falciparum, Entamoeba histolytica-specific antigen, and mite allergen extracts were determined. In children with severe malaria proinflammatory, IL-8, IP10, MIP-1δ, and LARC were at highly elevated levels, suggesting an association with severe disease. In contrast, the Th2-type chemokines TARC, PARC, and eotaxin-2 attained in children the same levels as in adults suggesting the evolution of immune regulatory components. In children with severe malaria, an elevated IgG1 and IgE reactivity to mite allergens and intestinal protozoan parasites was observed. In conclusion, exacerbated proinflammatory chemokines together with IgE responses to mite allergens or E. histolytica-specific antigen extract were observed in children with severe falciparum malaria.

Open access