Search Results

You are looking at 11 - 20 of 23 items for

  • Author or Editor: Z. Song x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The displacement adsorption enthalpies (ΔH) of the refolding of lysozyme (Lys) denatured by 1.8 mol L–1 guanidine hydrochloride (GuHCl) on a moderately hydrophobic surface at 298 K, pH 7.0 and various (NH4)2SO4 concentrations were determined by using a Micro DSC-III calorimeter. The study shows that the effect of salt concentrations on the three fractions of the enthalpy is that with increasing (NH4)2SO4 concentrations, the molecular conformation enthalpy of the adsorbed Lys has probably no distinct change at 1.8 mol L–1 GuHCl; the adsorption affinity enthalpy (exothermic) becomes more negative; and the dehydration enthalpy (endothermic) decreases. At lower salt concentrations, the dehydration, especially squeezing water molecules led by molecular conformation, which leads to an entropy-driving process, predominates over the adsorption affinity (also including the orderly orientation of molecular conformation), while at higher salt concentrations, the latter is prior to the former for contribution to ΔH and induces an enthalpy-driving process. Also, the optimal NH4)2SO4 concentration favoring refolding and renaturing of Lys denatured by 1.8 mol L–1 GuHCl was found.

Restricted access

Abstract  

Polyimide BTDA-ODA sample was prepared by polycondensation or step-growth polymerization method. Its low temperature heat capacities were measured by an adiabatic calorimeter in the temperature range between 80 and 400 K. No thermal anomaly was found in this temperature range. A DSC experiment was conducted in the temperature region from 373 to 673 K. There was not phase change or decomposition phenomena in this temperature range. However two glass transitions were found at 420.16 and 564.38 K. Corresponding heat capacity increments were 0.068 and 0.824 J g–1 K–1, respectively. To study the decomposition characteristics of BTDA-ODA, a TG experiment was carried out and it was found that this polyimide started to decompose at ca 673 K.

Restricted access

Abstract  

The effects of Amoxicillin Sodium and Cefuroxime Sodium on the growth of E. coli DH5α were investigated by microcalorimetry. The metabolic power-time curves of E. coli DH5α growth were determined by using a TAM air isothermal microcalorimeter at 37�C. By evaluation of the obtained parameters, such as growth rate constants (k), inhibitory ratio (I), the maximum heat power (P m) and the time of the maximum heat power (t m), one found that the inhibitory activity of Amoxicillin Sodium vs. E. coli DH5α is enhanced with the increasing of the Amoxicillin Sodium concentration, and the Cefuroxime Sodium has a stimulatory effect on the E. coli DH5α growth when the concentration is about 1 μg mL−1. The IC50 for the Amoxicillin Sodium and the Cefuroxime Sodium are 1.6 and 2.0 μg mL−1, respectively, it implicates that the E. coli DH5α is more sensitive to Amoxicillin Sodium than Cefuroxime Sodium.

Restricted access

Abstract  

The solid-state coordination reactions of lanthanum chloride with alanine and glycine, and lanthanum nitrate with alanine have been studied by classical solution calorimetry. The molar dissolution enthalpies of the reactants and the products in 2 mol L-1 HCl solvent of these three solid-solid coordination reactions have been measured using an isoperibol calorimeter. From the results and other auxiliary quantities, the standard molar formation enthalpies have been determined to be Δf H m θ[La(Ala)3Cl33H2O(s), 298.2 K]= -3716.3 kJ mol-1, Δf H m θ [La(Gly)3Cl35H2O(s), 298.2 K]= -4223.0 kJ mol-1 and Δf H m θ [La(Ala)4(NO3)3H2O(s), 298.2 K]= -3867.57 kJ mol-1, respectively.

Restricted access

Summary  

PM10 and PM2.5 samples were collected simultaneously in Beijing, China, and analyzed by INAA and ICP-MS. Seasonal variations of the concentrations of ambient particles and their elemental compositions were found. The main sources of PM10 and PM2.5 in spring were the crust, coal burning and vehicle exhaust, in which the former was significant. During a strong dust storm, the concentrations of the crustal elements in PM10 and PM2.5 increased remarkably, but the concentrations of some anthropogenic elements decreased. The enrichment factors of these anthropogenic elements also decreased sharply during the dust storm, which indicated that they were mostly originated from local anthropogenic pollution and diluted by the huge amount of dust.

Restricted access

New high-molecular-weight glutenin (HMW glutenin) sequences isolated from six Psathyrostachys juncea accessions by thermal asymmetric interlaced PCR differ from previous sequences from this species. They showed novel modifications in all of the structural domains, with unique C-terminal residues, and their N-terminal lengths were the longest among the HMW glutenins reported to date. In their repetitive domains, there were three repeatable motif units: 13-residue [GYWH(/I/Y)YT(/Q)S(/T)VTSPQQ], hexapeptide (PGQGQQ), and tetrapeptide (ITVS). The 13-residue repeats were restricted to the current sequences, while the tetrapeptides were only shared by D-hordein and the current sequences. However, these sequences were not expressed as normal HMW glutenin proteins because an in-frame stop codon located in the C-termini interrupted the intact open reading frames. A phylogenetic analysis supported different origins of the P. juncea HMW glutenin sequences than that revealed by a previous study. The current sequences showed a close relationship with D-hordein but appeared to be more primitive.

Restricted access
Cereal Research Communications
Authors: W.F. Song, Z.Y. Ren, Y.B. Zhang, H.B. Zhao, X.B. Lv, J.L. Li, C.H. Guo, Q.J. Song, C.L. Zhang, W.L. Xin, and Z.M. Xiao

Two lines, L-19-613 and L-19-626, were produced from the common wheat cultivar Longmai 19 (L-19) by six consecutive backcrosses using biochemical marker-assisted selection. L-19 (Glu-D1a, Glu-A3c/Gli-A1?; Gli-A1? is a gene coding for unnamed gliadin) and L-19-613 (Glu-D1d, Glu-A3c/Gli-A1?) formed a set of near-isogenic lines (NILs) for HMW-GS, while L-19-613 and L-19-626 (Glu-D1d, Glu-A3e/Gli-A1m) constituted another set of NILs for the LMW-GS/gliadins. The three L-19 NILs were grown in the wheat breeding nursery in 2007 and 2008. The field experiments were designed using the three-column contrast arrangement method with four replicates. The three lines were ranked as follows for measurements of gluten strength, which was determined by the gluten index, Zeleny sedimentation, the stability and breakdown time of the farinogram, the maximum resistance and area of the extensogram, and the P andWvalues of the alveogram: L-19-613 > L-19-626 > L-19. The parameters listed above were significantly different between lines at the 0.05 or 0.01 level. The Glu-D1 and Glu-A3/Gli-A1 loci had additive effects on the gluten index, Zeleny sedimentation, stability, breakdown time, maximum resistance, area, P and W values. Although genetic variation at the Glu-A3/Gli-A1 locus had a great influence on wheat quality, the genetic difference between Glu-D1d and Glu-D1a at the Glu-D1 locus was much larger than that of Glu-A3c/Gli-A1? and Glu-A3e/Gli-A1m at the Glu-A3/Gli-A1 locus. Glu-D1d had negative effects on the extensibility and the L value compared with Glu-D1a. In contrast, Glu-A3c/Gli-A1? had a positive effect on these traits compared with Glu-A3e/Gli-A1m.

Restricted access

Abstract

As N-2′,4′-dinitrophenyl-3,3-dinitroazetidine (DNPDNAZ) is an important derivative of 3,3-dinitroazetidine, its thermal behavior was studied under 0.1 and 2 MPa by the differential scanning calorimetry (DSC) method. The results of this study show that there are one melting process and two exothermic decomposition processes. Its kinetic parameters of the intense exothermic decomposition process were obtained from the analysis of the DSC curves. The activation energy and the mechanism function under 0.1 MPa are 167.26 kJ mol−1 and f(α) = 3(1 + α)2/3[(1 + α)1/3− 1]−1/2, respectively, and the said parameters under 2 MPa are 169.30 kJ mol−1 and f(α) = 3(1 + α)2/3[(1 + α)1/3− 1]−1/2, respectively. The specific heat capacity of DNPDNAZ was determined using a continuous C p mode of micro-calorimeter. Using the relationship between C p and T with the thermal decomposition parameters, the time of the thermal decomposition from initialization to thermal explosion (adiabatic time-to-explosion, t TIAD), the self-accelerating decomposition temperature (T SADT), thermal ignition temperature (T TIT), critical temperatures of thermal explosion (T b), and half-life (t 1/2) were obtained to evaluate its thermal safety under different pressures.

Restricted access

Summary  

The comprehension of the behavior of radioactive nuclides in aquifer requires the study of the sorption processes of nuclides in various geochemical conditions. The sorption/desorption of 65Zn(II) on surface sediments (0-2 cm) was investigated by batch method in sea water (pH 8.20, 35‰ salinity, filtered by 0.45mm) at ambient temperature. The surface sediments were obtained from four stations around the Daya Bay of Guangdong Province (China), where the first nuclear power station of China has been running from 1994. The sorption process is fast initially and around 39% average of sorption percentage (SP%) can be quickly obtained in 15 minutes for all the surface sediments. Then, the sorption percentage becomes constant. In 30 days of contact time 79.6% sorption percentage and K d=3.9. 103ml/g distribution coefficient was obtained. The value of K dbecame constant, 4.0. 103ml/g, in contact time more than 120 hours. The distribution coefficient K ddecreases with increasing sediment concentration from 4.0 to 250 mg/l from 1.31. 104to 1.68. 103ml/g, respectively. Then the value of K dgoes up to 5.38. 103ml/g with sediment concentration of 3000 mg/l. The desorption experiments suggest that the sorption of Zn(II) is irreversible with a hyteresis coefficient of 66%.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: L. Yang, Li Sun, Fen Xu, J. Zhang, J. Zhao, Z. Zhao, C. Song, R. Wu, and Riko Ozao

Abstract  

The microcalorimetric method has been used to study the effects of cefpiramide and ceftizoxime sodium on the E. coli growth. The results revealed that these two cephalosporins may alter the metabolic way of the E. coli. Moreover, the lethal doses of cefpiramide and ceftizoxime sodium are 2.000 and 0.2000 μg mL−1, respectively. Combining with the relationships between growth rate constant (k), the maximum power output (P m), the time corresponding to the maximum power output (t m) and cephalosporins concentration (C), one can draw the conclusion that the ceftizoxime sodium has a stronger inhibition effects on the growth of E. coli than that of cefpiramide and they both have the possibility to induce the drug fever.

Restricted access