Search Results

You are looking at 21 - 26 of 26 items for :

  • Author or Editor: B Howell x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The thermal polymerization of styrene is a long-known and well-practiced phenomena. While the mechanism of the thermal initiation event has been the subject of several investigations, it is not yet well understood. In an attempt to gain further insight as to the details of possible initiation from styrene dimer, analogous stable cycloadducts (maleic anhydride, tetracyanoethylene) of 1- and 2-vinylnaphthalene have been synthesized, fully characterized spectroscopically, and subjected to thermal decomposition. In the main, the major thermal event observed for these styrene dimer mimics is retro cycloaddition. This process is characterized by an activation enthalpy of approximately 30 kcal mol–1. Aminor process which accompanies the major reaction is the homolysis of a carbon–hydrogen bond to generate a carbon radical which may be trapped as a stable adduct of the 2,2,6,6-tetramethylpiperinyloxy (TEMPO) radical.

Restricted access

Abstract  

A nanoscale multivalent platinum drug based on a poly(amidoamine) [PAMAM] dendrimer (generation 4.5, carboxylate surface) has been synthesized and fully characterized using a variety of spectroscopic, chromatographic and thermal methods. Treatment of the dendrimer with an aqueous solution containing an excess diaquo(cis-1,2-diaminocyclohexane)platinum(II) produces a conjugate containing approximately forty (diaminocyclohexane)platinum(II) moieties at the surface of the dendrimer. This material undergoes smooth two-stage thermal decomposition to provide residual platinum oxide reflecting the platinum loading in the drug.

Restricted access

Abstract

The thermal degradation of a series of 1,1,2,2-tetraaryl-1,2-ethanediols has been examined using thermogravimetry (TG) and gas chromatography/mass spectrometry (GC/MS). These compounds are smoothly converted to the corresponding diaryl ketone and diaryl carbinol, i.e., the compounds undergo disproportionation arising from homolytic cleavage of the central carbon–carbon bond. Presumably, cleavage of the carbon–carbon bond generates a radical pair which disproportionates to provide the observed products.

Restricted access

Abstract  

Organoplatinum antitumor agents are very effective, broad-spectrum drugs used for the treatment of a variety of cancerous conditions. The two most prominent of these, Cisplatin [cis-diamminodichloroplatinum(II)] and Carboplatin [diammino(1,1-cyclobutanedicarboxylato)platinum(II)], are large scale commercial successes. The third, Oxaliplatin [((trans-1,2-diamminocyclohexane)oxalato)platinum(II)], is now commercially available. The administration of all these drugs is accompanied by severe side effects. For Cisplatin, the most debilitating of these is kidney damage and extreme nausea. Several approaches to generate drug-release formulations that might mitigate toxic side effects have been explored. Now, platinum(IV) compounds which are more inert than platinum(II) compounds, and consequently less toxic, but which may be reduced to platinum(II) species within the cell are being evaluated for effectiveness in the treatment of cancer. The thermal stability of several precursors to compounds of this kind has been examined by thermogravimetry. In general, these materials lose ligands sequentially to generate a residue of platinum. This behavior may be generally useful for the characterization of such materials.

Restricted access

Abstract

A difunctional imide monomer may be produced from 4-nitrophthalic anhydride and m-phenylenediamine. The requisite anhydride may be generated by nitration of phthalimide followed by hydrolysis to the corresponding acid and dehydration. All intermediate compounds have been fully characterized using spectroscopic and thermal methods.

Restricted access

Abstract  

Two standard vinylidene chloride copolymers, the first containing approximately 9 mass% methyl acrylate and the second containing vinyl chloride at a nominal 15 mass% were prepared by radical suspension techniques using a series of peroxide and azo initiators (all of approximately the same half-life temperature for decomposition). The nature of the initiator could impact the stability of the resulting polymer in two ways. Instability could be introduced either via end-group effects or by attack of residual initiator fragments on the finished polymer during isolation and residual monomer stripping. In this case, the relative thermal stability of the resins produced was assessed by exposing samples to heat and shear in an air environment in a two-roll mill (Brabender Prep-Mill). The rate and extent of degradation was most readily apparent from color development during this treatment. The more thermally stable polymers were produced using initiator radicals that did not attack the polymer during isolation/stripping processes.

Restricted access