Search Results
You are looking at 21 - 30 of 41 items for
- Author or Editor: F. Zhao x
- Refine by Access: All Content x
High molecular weight (HMW) glutenin subunits are important seed storage proteins in wheat and its related species. Novel HMWglutenin subunits in Aegilops tauschii accession of TA2484 were detected and characterized. SDS-PAGE analysis revealed the y-type subunit from TA2484 displayed similar electrophoretic mobility compared to that of 1Dy12 subunit. However, the electrophoretic mobility of x-type subunit was faster than that of 1Dx2 subunit. The primary structure of the two cloned subunits from TA2484 was similar to that of the x- and y-type subunits reported before. However, the 148 residues of the x-type subunit, which contained the sequence element GHCPTSLQQ, in the middle of the repetitive domain was quite different from other x-type subunits. Moreover, the 68 residues in this region were identical to those of the y-type subunits from the same accession. Consequently, 1Dx2.3*t (x-type subunit of TA2484) contains an extra cystenin residue located at the repetitive domain, which is novel compared to the x-type subunits reported so far. Phylogenetic analysis indicated that two subunits from accession TA2484 were in the x- and y-type subunit cluster, but bootstrapping value of 100% gave high support for the spilt between two subunits (1Dx2.3*t and 1Dy12.3*t) and their alleles, respectively. A hypothesis on the genetic mechanism generating this novel sequence of 1Dx2.3*t subunit is suggested.
Global rice supplies have been found contaminated with unapproved varieties of genetically modified (GM) rice in recent years, which has led to product recalls in several of countries. Faster and more effective detection of GM contamination can prevent adulterated food, feed and seed from being consumed and grown, minimize the potential environmental, health or economic damage. In this study, a simple, reliable and cost-effective multiplex polymerase chain reaction (PCR) assay for identifying genetic modifications of TT51-1, Kemingdao1 (KMD1) and Kefeng6 (KF6) rice was developed by using the event-specific fragment. The limit of detection (LOD) for each event in the multiplex PCR is approximately 0.1%. Developed multiplex PCR assays can provide a rapid and simultaneous detection of GM rice.
In this study, we employed electron microscopy to investigate the cytogenetic and embryologic mechanisms of parthenogenesis induced in the 1BL/1RS male sterile lines of wheat. Analysis of the root tips and acid polyacrylamide gel electrophoresis indicated that all of the male sterile lines and their maintainer lines were 1BL/1RS translocation lines, whereas the restorer lines were non-1BL/1RS translocation lines. Furthermore, the chromosomes of 1BL/1RS wheat lines with T. aestivum cytoplasm and Aegilops cytoplasm (include Ae. kotschyi, Ae. ventricosa, Ae. variabilis) paired abnormally at different rates during meiotic metaphase I (MMI). The translocated segment size of the 1RS chromosome and the specific nuclear–alloplasm interaction impaired the pairing of homologous chromosome in the background of the specific Aegilops cytoplasm at MMI. In addition, the frequency of abnormal chromosomal pairing was directly affected by the frequency of haploid production induced by parthenogenesis. The results of this study provide significant insights into the mechanism of parthenogenesis, which is probably due to the abnormal fertilization of synergid cells in alloplasmic 1BL/1RS wheat.
Chromosome segment substitution lines (CSSLs) are powerful tools to combine naturally occurring genetic variants with favorable alleles in the same genetic backgrounds of elite cultivars. An elite CSSL Z322-1-10 was identified from advanced backcrosses between a japonica cultivar Nipponbare and an elite indica restorer Xihui 18 by SSR marker-assisted selection (MAS). The Z322-1-10 line carries five substitution segments distributed on chromosomes 1, 2, 5, 6 and 10 with an average length of 4.80 Mb. Spikilets per panicle, 1000-grain weight, grain length in the Z322-1-10 line are significantly higher than those in Nipponbare. Quantitative trait loci (QTLs) were identified and mapped for nine agronomic traits in an F3 population derived from the cross between Nipponbare and Z322-1-10 using the restricted maximum likelihood (REML) method in the HPMIXED procedure of SAS. We detected 13 QTLs whose effect ranging from 2.45% to 44.17% in terms of phenotypic variance explained. Of the 13 loci detected, three are major QTL (qGL1, qGW5-1 and qRLW5-1) and they explain 34.68%, 44.17% and 33.05% of the phenotypic variance. The qGL1 locus controls grain length with a typical Mendelian dominance inheritance of 3:1 ratio for long grain to short grain. The already cloned QTL qGW5-1 is linked with a minor QTL for grain width qGW5-2 (13.01%) in the same substitution segment. Similarly, the previously reported qRLW5-1 is also linked with a minor QTL qRLW5-2. Not only the study is important for fine mapping and cloning of the gene qGL1, but also has a great potential for molecular breeding.
High-yield common buckwheat ‘cv. Fengtian 1’ (FT1) and tartary buckwheat ‘cv. Jingqiao 2’ (JQ2) were selected to investigate the characteristics of the grain-filling process and starch accumulation of high-yield buckwheat. FT1 had an average yield that was 43.0% higher than that of the control ‘cv. Tongliaobendixiaoli’ (TLBDXL) in two growing seasons, while JQ2 had an average yield that was 27.3% higher than that of the control ‘cv. Chuanqiao 2’ (CQ2). The Richards equation was utilized to evaluate the grain-filling process of buckwheat. Both FT1 and JQ2 showed higher values of initial growth power and final grain weight and longer linear increase phase, compared with respective control. These values suggest that the higher initial increasing rate and the longer active growth period during grain filling play important roles to increase buckwheat yield. Similar patterns of starch, amylose and amylopectin accumulation were detected in common buckwheat, leading to similar concentration of each constituent at maturity in FT1 and TLBDXL. Tartary buckwheat showed an increasing accumulation pattern of amylose in developing seeds, which differed from that of starch and amylopectin. This pattern led to a significant difference of the concentrations of amylose and amylopectin at maturity between JQ2 and CQ2, the mechanisms of which remained unclear. Nevertheless, both FT1 and JQ2 showed increased starch, amylose, and amylopectin accumulation during the physiological maturity of grains. The results suggest that prolonging the active grain-filling period to increase carbohydrate partitioning from source to seed sink can be an effective strategy to improve buckwheat yield.
To comprehensively understand the genetic basis of plant height (PH), quantitative trait locus (QTL) analysis for internode lengths, internode component indices and plant height component index (PHCI) were firstly conducted in the present study. Two related F8:9 recombinant inbred line (RIL) populations comprising 485 and 229 lines were used. Two hundred and nine putative additive QTL for the eight traits were identified, 35 of which showed significance in at least three trials. Of these, at least 11 pairwise QTL were common to the two populations. PH components at the QTL level had different effects on PH, confirming our previous multivariate conditional analysis (Cui et al. 2011). Eleven major QTL that showed consistency in expression across environments should be of great value in the genetic improvement of PH in wheat. The results above will enhance the understanding of the genetic basis of PH in wheat.
Grain yield (GY) and yield components (YC) were investigated using two F8: 9 RILs, comprising 229 and 485 lines, respectively. A conditional analysis was conducted to generate conditional values for GY independent of each YC. Then both unconditional and conditional values were analyzed to map QTLs with additive effect. In both RILs, up to 23 unconditional and conditional QTLs were detected. However, only two QTLs were identified repeatedly among environments. All QTLs, except for 4 detected in unconditional mapping, were also identified as conditional QTLs, whereas a number of QTLs were additionally detected in conditional mapping. The number of QTLs detected that affected GY was different with respect to component-special influences. Our results revealed that the contributions of YC influencing QTL expression related to GY differed.
A recombinant inbred line (RIL) population with 302 lines derived from a cross of Weimai 8 × Luohan 2 was used to identify the quantitative trait loci (QTL) for plant height (PH) in wheat (Triticum aestivum L.). Possible genetic relationships between PH and PH components (PHC), including spike length (SL) and internode length from the first to the fourth node counted from the top, abbreviated as FIITL, SITL, TITL and FOITL, respectively, were evaluated at the QTL level. A QTL for PH was mapped using data on PH and on PH conditioned by PHC using the IciMapping V3.0 software. Conditional QTL mapping proved that, at the QTL level, SL contributed the least to PH, followed by FIITL and FOITL, while TITL had the strongest influence on PH, followed by SITL. These results indicate that the conditional QTL mapping method can be used to evaluate possible genetic relationships between PH and PHC, and that it can efficiently and precisely reveal counteracting QTL, which will enhance our understanding of the genetic basis of PH in wheat.
The mechanism of the fact that Mn deficiency damages the photosynthesis of plants is not yet fully understood. The main aim of the study was to determine Mn deficiency effects in photophosphorylation and key enzymes of CO 2 assimilation of maize. Maize plants were cultivated in Hoagland’s solution. They were subjected to Mn deficiency and to Mn administered in the Mn-deficient Hoagland’s media. The results showed that Mn deficiency was found to cause extensive declines in plant weight and chlorophyll a content, electron transport and oxygen-evolving rate, photophosphorylation rate, activities of Mg 2+ -ATPase, Ca 2+ -ATPase, Rubisco and Rubisco activase, and mRNA expressions of Rubisco and Rubisco activase of maize, but it only slightly affected chlorophyll b and carotenoid formation. However, Mn addition decreased the inhibition of the photosynthesis in maize caused by Mn deficiency.
Abstract
This work used a carrageenan-based thrombosis model to determine the preventative effects of Lactobacillus plantarum YS1 (LPYS1) on thrombus. In thrombotic mice, LPYS1 improved the activated partial thromboplastin time (APTT), while decreasing the thrombin time (TT), prothrombin time (PT), and fibrinogen (FIB) content. In thrombotic mouse serum, LPYS1 decreased the levels of malondialdehyde (MDA), tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), nuclear factor kappa-B (NF-κB), and interleukin-1 beta (IL-1β), while also increasing the activities of superoxide dismutase (SOD) and catalase (CAT). Moreover, LPYS1 upregulated the mRNA expression levels of copper/zinc-SOD (Cu/Zn-SOD), manganese-SOD (Mn-SOD), and CAT in the colon tissues of thrombotic mice, while downregulating those of NF-κB p65, IL-6, TNF-α, and interferon-gamma (IFN-γ) mRNA. In tail vein vascular tissues, LPYS1 suppressed the mRNA expression levels of NF-κB p65, intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. The abundances of both beneficial and pathogenic bacteria were altered by LPYS1. These findings show that LPYS1 has the capacity to protect mice from thrombosis, while also revealing some of the underlying mechanisms of this effect.