Search Results
You are looking at 21 - 30 of 104 items for
- Author or Editor: J. Lee x
- Refine by Access: All Content x
Abstract
A pilot plant was developed for the reclamation and reuse of secondary effluent from a sewage treatment plant. The plant system consists of sand filtration, gamma-irradiation, ozonation and ion-exchange. Gamma-irradiation showed effective organic contaminant decomposition and this resulted in the reduction of 5-day biochemical oxygen demand (BOD5), color, chemical oxygen demand (CODCr) and total organic carbon (TOC). Ion-exchange significantly removed inorganic ions, and thus reduced total nitrogen (TN) and total phosphorus (TP). The average reduction in color, CODCr, BOD5, TOC, TN and TP, which was obtained after 12 operations, was 64, 52, 67, 61, 95 and 92%, respectively. Irrespective of applied radiation dose, the treated water fully satisfied the quality requirements of household water that can be used for all home uses except for drinking and human contact uses.
Abstract
Gamma-ray treatment in the presence of ozone (O3) and titanium dioxide (TiO2) showed an efficient removal of trichloroethylene (TCE) and perchloroethylene (PCE). Without gamma-irradiation, TCE and PCE were not sufficiently decomposed to comply with the water quality limit of groundwater. However, near 100% of TCE and PCE were removed at a dose of 300 Gy in the presence of O3 and TiO2, where TiO2 showed an explicit enhancement of decomposition. Cytotoxicity test using Chinese hamster V79 cells showed no toxicity of the TCE and PCE decomposition products.
Abstract
Carbonate ions significantly inhibit the decomposition of TCE (trichloroethylene) and PCE (perchloroethylene) by gamma-rays. The inhibition effect is larger in the case of TCE than PCE due to a greater dependence of TCE decomposition on hydroxyl radicals. The inhibition effect of carbonate ions was characterized by an EPR/spin-trapping technique. The intensity of DMPO-OH adduct signal decreased as the carbonate ion concentration increased and the percent of signal reduction was linearly proportional to the logarithm of carbonate ion concentration. This directly proves that the carbonate ions inhibit the decomposition of TCE and PCE by scavenging hydroxyl radicals.
Abstract
We have measured the cross sections of the 16O(n,t) reactions above 18.1 up to 33.1 MeV in an neutron activation method. H2O (water) as an 16O target was irradiated with semi-monoenergetic neutrons generated from the 9Be(p,n)9B reaction with 25–35 MeV protons. The neutron flux was obtained with the aid of previous study by Uwamino et al. (Nucl Instr Methods A 271:546, 1988). The tritium activities were measured by using the liquid scintillation counting (LSC) method. The present value for the cross section of 16O(n,t) reaction agrees with previous values measured by using the same LSC method at similar neutron energy ranging from 18.1 up to 33.1 MeV.
The complete chloroplast (cp) genome sequence of Pearl millet (Pennisetum glaucum [L.] R. Br.), an important grain and forage crop in the family Poaceae, is reported in this study. The complete cp genome sequence of P. glaucum is 138,172 bp in length with 38.6% overall GC content and exhibits a typical quadripartite structure comprising one pair of inverted repeat (IR) regions (22,275 bp) separated by a small single-copy (SSC) region (12,409 bp) and a large single-copy (LSC) region (81,213). The P. glaucum cp genome encodes 110 unique genes, 76 of which are protein-coding genes, 4 ribosomal RNA (rRNA) genes, 30 transfer RNA (tRNA) genes and 18 duplicated genes in the IR region. Nine genes contain one or two introns. Whole genome alignments of cp genome were performed for genome-wide comparison. Locally collinear blocks (LCBs) identified among the cp genomes showed that they were well conserved with respect to gene organization and order. This newly determined cp genome sequence of P. glaucum will provide valuable information for the future breeding programs of valuable cereal crops in the family Poaceae.
Abstract
Multielement analyses of environmental samples have been carried out using proton activation analysis. It has been shown that this technique is suitable for both the analysis of aerosol particulates collected on polystyrene filters and for the analysis of the roots of Eucalyptus trees. Aerosol particulates from around the eastern coast of Australia were found to contain S, Ca, Ti, Cr, Fe, Ni, Cu, Zn, Ga, Se, Sr, Y, Zr, Ru, Pt and Hg ranging in concentration from <0.003 to over 3.0 μg per cubic metre of air. A comparison between the ashed roots of healthy and diseased Eucalyptus trees from the Brisbane Ranges in Victoria showed that the concentrations of Fe and Ti in the diseased tree were only 30% and 59% respectively of that in the healthy tree.
Isothermal cure characterization of dicyclopentadiene
The glass transition temperature and conversion
Abstract
Conversion (α) and the glass transition temperature (T g) were investigated during the isothermal cure of endo-dicyclopentadiene (DCPD) with a Grubbs catalyst for different temperatures using differential scanning calorimetry. Conversion vs. In (time) data at an arbitrary reference temperature were superposed by horizontal shift and the shift factors were used to calculate an Arrhenius activation energy. Glass transition temperature vs. conversion data fell on a single curve independent of cure temperature, implying that reaction of the norbornene and cyclopentene ring of DCPD proceeds in a sequential fashion. Implications of the isothermal reaction kinetics for self-healing composites are discussed.
Abstract
An approach based on sequential extraction separation and the subsequent ICP-MS measurement was introduced to determine 99Tc in radioactive wastes. The radwastes were firstly alkaline-fused and the 99Tc was separated by a sequential solvent extraction prior to ICP-MS measurement. NaDDC was selected as a chelation reagent in the solvent extraction processes. The influence of HCl and matrix concentration on the recovery yield and the effectiveness of removing isobar and unwanted radionuclides, such as 137Cs, 54Mn, 60Co and 110mAg, were evaluated. The designed sequential extraction procedure was optimized by an extraction experiment. The proposed technique is proven to be a simple and practical alternative for 99Tc determination in low-level radioactive wastes; chemical separation of 99Tc can be simplified and preconcentration such as precipitation and/or ion exchange, before the solvent extraction, can be excluded.
Abstract
The prediction of the adsorption behavior of natural composite materials was studied by a single mineral approach. The adsorption of U(VI) on single minerals such as goethite, hematite, kaolinite and quartz was fully modeled using the diffuse-layer model in various experimental conditions. A quasi-thermodynamic database of surface complexation constants for single minerals was established in a consistent manner. In a preliminary work, the adsorption of a synthetic mixture of goethite and kaolinite was simulated using the model established for a single mineral system. The competitive adsorption of U(VI) between goethite and kaolinite can be well explained by the model. The adsorption behavior of natural composite materials taken from the Koongarra uranium deposit (Australia) was predicted in a similar manner. In comparison with the synthetic mixture, the prediction was less successful in the acidic pH range. However, the model predicted well the adsorption behavior in the neutral to alkaline pH range. Furthermore, the model reasonably explained the role of iron oxide minerals in the adsorption of U(VI) on natural composite materials.
Abstract
The novel NDOE (1,12,15-triaza-3,4:9,10-dibenzo-5,8-dioxacycloheptadecane) ion exchange resin was prepared. The ion exchange capacity of NDOE azacrown ion exchanger was 0.2 meq/g dry resin. A study on the separation of lithium isotopes was carried out with NDOE novel azacrown ion exchange resin. The lighter isotope,6Li concentrated in the solution phase, while the heavier isotope,7Li is enriched in the resin phase. By column chromatography (0.1 cm I.D.×32 cm height) using 2.0M NH4Cl as an eluent, a separation factor,a=1.0201 was obtained.