Search Results

You are looking at 21 - 23 of 23 items for

  • Author or Editor: K. Das x
  • Refine by Access: All Content x
Clear All Modify Search
Cereal Research Communications
Authors:
R. Goswami
,
R.U. Zunjare
,
S. Khan
,
V. Muthusamy
,
A. Baveja
,
A.K. Das
,
S.K. Jaiswal
,
J.S. Bhat
,
S.K. Guleria
, and
F. Hossain

Vitamin-A deficiency is a major health concern. Traditional yellow maize possesses low provitamin-A (proA). Mutant crtRB1 gene significantly enhances proA. 24 experimental hybrids possessing crtRB1 allele were evaluated for β-carotene (BC), β-cryptoxanthin (BCX), lutein (LUT), zeaxanthin (ZEA), total carotenoids (TC) and grain yield at multi-locations. BC (0.64–17.24 µg/g), BCX (0.45–6.84 µg/g), proA (0.86–20.46 µg/g), LUT (9.60–31.03 µg/g), ZEA (1.24–12.73 µg/g) and TC (20.60–64.02 µg/g) showed wide variation. No significant genotype × location interaction was observed for carotenoids. The mean BC (8.61 µg/g), BCX (4.04 µg/g) and proA (10.63 µg/g) in crtRB1-based hybrids was significantly higher than normal hybrids lacking crtRB1-favourable allele (BC: 1.73 µg/g, BCX: 1.29 µg/g and proA: 2.37 µg/g). Selected crtRB1-based hybrids possessed 33% BC and 40% BCX compared to 6% BC and 5% BCX in normal hybrids. BC showed positive correlation with BCX (r = 0.90), proA (r = 0.99) and TC (r = 0.64) among crtRB1-based hybrids. Carotenoids didn't show association with grain yield. Average yield potential of proA rich hybrids (6794 kg/ha) was at par with normal hybrids (6961 kg/ha). PROAH-13, PROAH-21, PROAH-17, PROAH-11, PROAH-23, PROAH-24 and PROAH-3 were the most promising with >12 µg/g proA and >6000 kg/ha grain yield. The newly identified crtRB1-based hybrids assume significance in alleviating malnutrition.

Restricted access
Cereal Research Communications
Authors:
R. Ponnuswamy
,
A. Rathore
,
A. Vemula
,
R.R. Das
,
A.K. Singh
,
D. Balakrishnan
,
H.S. Arremsetty
,
R.B. Vemuri
, and
T. Ram

The All India Coordinated Rice Improvement Project of ICAR-Indian Institute of Rice Research, Hyderabad organizes multi-location testing of elite lines and hybrids to test and identify new rice cultivars for the release of commercial cultivation in India. Data obtained from Initial Hybrid Rice Trials of three years were utilized to understand the genotype × environment interaction (GEI) patterns among the test locations of five different agro-ecological regions of India using GGE and AMMI biplot analysis. The combined analysis of variance and AMMI ANOVA for a yield of rice hybrids were highly significant for GEI. The GGE biplots first two PC explained 54.71%, 51.54% and 59.95% of total G + GEI variation during 2010, 2011 and 2012, respectively, whereas AMMI biplot PC1 and PC2 explained 46.62% in 2010, 36.07% in 2011 and 38.33% in 2012 of the total GEI variation. Crossover interactions, i.e. genotype rank changes across locations were observed. GGE biplot identified hybrids, viz. PAN1919, TNRH193, DRH005, VRH639, 26P29, Signet5051, KPH385, VRH667, NIPH101, SPH497, RH664 Plus and TNRH222 as stable rice hybrids. The discriminative locations identified in different test years were Coimbatore, Maruteru, VNR, Jammu, Raipur, Ludhiana, Karjat and Dabhoi. The AMMI1 biplot identified the adaptable rice hybrids viz., CNRH102, DRH005, NK6303, NK6320, DRRH78, NIPH101, Signet5050, BPH115, Bio452, NPSH2003, and DRRH83. The present study demonstrated that AMMI and GGE biplots analyses were successful in assessing genotype by environment interaction in hybrid rice trials and aided in the identification of stable and adaptable rice hybrids with higher mean and stable yields.

Restricted access
Cereal Research Communications
Authors:
B. Kumar
,
K.S. Hooda
,
R. Gogoi
,
V. Kumar
,
S. Kumar
,
A. Abhishek
,
P. Bhati
,
J.C. Sekhar
,
K.R. Yathish
,
V. Singh
,
A. Das
,
G. Mukri
,
E. Varghese
,
H. Kaur
,
V. Malik
, and
O.P. Yadav

Maydis leaf blight (MLB), a serious foliar fungal disease of maize, may cause up to 40% losses in yield. The present studies were undertaken to identify the stable sources of MLB resistance, its inheritance study, and testing of MLB resistance linked markers from diverse background in the Indian adapted tropical maize genotypes. A set of 112 inbred lines were screened under artificially created epiphytotics conditions at three hotspot locations. Analysis across multi-locations revealed significant effects of genotypes and environments, and non-significant effects due to genotypes × environment interaction on disease incidence. A total of 25 inbred lines with stable resistance were identified across multi-locations. Inheritance of resistance was studied in six F1s and two F2s of resistant and susceptible parents. The null hypothesis of segregation of resistance and susceptible for mono and digenic ratios in two F2 populations was rejected by Chi-square test. The non-significant differences among the reciprocal crosses depicted the complete control of nuclear genome for MLB resistance. Partial dominance in F1s and normal distribution pattern in F2s of resistant and susceptible parents suggested polygenic nature of MLB resistance. Correlation studies in F2 populations exhibited significant negative correlation between disease score and days to flowering. Five simple sequence repeats (SSRs) markers, found associated to MLB resistance in different studies were unable to differentiate amongst MLB resistance and susceptible parents in our study. This emphasizes the need of fine mapping for MLB resistance in Indian germplasm. The identified stable sources of resistance and information on inheritance study can be used further in strengthening of resistance breeding against MLB.

Restricted access