Search Results

You are looking at 21 - 30 of 31 items for

  • Author or Editor: L. Láng x
  • Refine by Access: All Content x
Clear All Modify Search

The presence and frequency of the resistance gene complex Lr34/Yr18 was investigated in the wheat breeding programme of the Agricultural Research Institute, Martonvásár, Hungary. A total of 226 wheat cultivars and advanced lines from Hungary and other countries were tested with an STS marker, csLV34 , to understand the distribution of the Lr34/Yr18 resistance gene complex. A 150-bp PCR fragment was amplified in 64 wheat cultivars and lines with the resistance genes Lr34/Yr18 , while a 229-bp fragment was detected in 162 genotypes without Lr34/Yr18 . The genotypes with Lr34/Yr18 accounted for 28.3% of the wheat cultivars and advanced lines tested. Among the 128 varieties and breeding lines of Martonvásár origin tested, 34 carried the Lr34/Yr18 genes, with a frequency of 26.6%. The frequency of these genes was 30.6% in genotypes of other origin. The STS marker csLV34 could be used as an effective tool for the marker-assisted selection of Lr34/Yr18 genes in breeding wheat cultivars with durable rust resistance.

Restricted access
Cereal Research Communications
Authors:
C. Kuti
,
L. Láng
,
G. Gulyás
,
I. Karsai
,
K. Mészáros
,
G. Vida
, and
Z. Bedő

The research institute in Martonvásár is one of the largest agricultural research institutes in Hungary and in Central Europe. For many years now, the accumulated data on the extensive wheat breeding stocks has been handled and analysed using programs developed in the institute. The information system that has been elaborated and constantly improved can be used for keeping records of breeding stock, for planning field and laboratory experiments, for site-plant performance evaluation, for automated data collection, for the rapid evaluation of the results and for effective management of the pedigree, seed exchange and the institute’s cereal gene bank.The demand for the storage of molecular data and their use in breeding has increased parallel with the development of new, PCR-based markers. For this reason, informatics tools (data structure and software) suited to the design of marker-assisted selection experiments and the interpretation of the results have been developed as part of the existing Martonvásár wheat breeding information system. The aim was to link molecular data to the phenotypic information already available in the database and to make the results available to wheat breeders and geneticists.The interpretation of molecular data related to specific genotypes is of assistance in clarifying the genetic background of economically important phenotypic traits, in identifying markers linked to the useful genes or agronomic traits to be found in the genomics database, and in the selection of satisfactory parental partners for breeding. Marker assisted selection coupled with traditional breeding activities enables the breeder to make plant selections based on the presence of target genes. Conventional wheat breeding with the integrated molecular component allows breeders to more accurately and efficiently select defined sets of genes in segregating generations.The molecular data are stored in a relational database, the central element of which is the [DNASource] entity. This is used to collect and store information on gene sources arising during breeding. It is therefore linked both to the phenotypic data stored in the traditional breeding system (measurements, observations, laboratory data) and to the component parts of the new, molecular data structure ([PrimerBank], [Marker], [Allele] and [Gene]).

Restricted access

In the present study, heat treatment was carried out in five different phenological phases, from the first node detectable (DEV31) growth stage to 20 days after flowering, on four wheat genotypes with very different adaptation strategies. They were grown in a controlled environment in a phytotron chamber and exposed to a night temperature of 20°C and a day temperature of either 30°C, at DEV31, or 35°C at all the later developmental phases, for an interval of 14 days. Plant height, leaf number, number of tillers, grain number and grain weight per main and side spikes, TKW per main and side spikes, length of the main and side spikes, and spikelet number per main and side spikes were recorded. High temperature enhanced the stem growth intensity, plant height and tiller number. In contrast, the length of side spikes, spikelet no./side spike, grain no./main and side spike, grain weight/main and side spike and TKW/main and side spike were significantly decreased. The stress response depended strongly on the developmental phase in which the heat stress was applied. Fleischmann 481 and Soissons showed definitely contrasting tendencies both in grain number and grain weight. In the case of the Plainsman V and Mv Magma pair, the higher heat stress tolerance of Magma compared to Plainsman V was evident also from the grain number and weight of the main spike at each developmental phase.

Restricted access

Damaged starch, protein and arabinoxylan (AX) content and composition have been related to water absorption (WA) in a large set of samples. We tested 20 modern bread wheat cultivars bred in Hungary, 20 old Hungarian landraces, and 17 cultivars with special biochemical/functional characteristics from all around the world, this last set for international comparison. Grain was field grown in the 2011 and 2012 harvest seasons. Alinear mathematical model has been developed to estimate WA from protein content, starch damage, AX content and the relative amount of soluble proteins with strong correlation (r2 = 0.65) between measured and estimated data. The introduction of a new parameter, related to the cultivar dependent quantitative composition of soluble proteins and determined by lab-on-a-chip (LOC) analysis, largely improved the predictability of WA. Based on the large variation among the level of AX and certain soluble protein components in wheat flour and their significant contribution toWA determination, it was concluded, that these properties could be appropriate target traits to alter them during wheat breeding programs to improve the WA of wheat flour.

Restricted access

The characterization of the old Hungarian varieties and landraces is an important part of Hungarian cereal research and breeding. Analysis of these germplasms with the most up-to-date methodologies results a broad scale of diversity of glutenin alleles, which proves their genetic heterogenicity. Exploitation of this attribute is an untapped possibility for developing modern varieties in our breeding programs. The previous research work revealed this diversity by SDS-PAGE analysis and MALDI-TOF technology. The powerful tool, the high throughput lab-on-a chip technique can facilitate the effectiveness of this function and decreases the cost of the analysis. This study demonstrates the application of this technique for analysing the old varieties. The allelic composition and their effects on bread making quality concluded by means of functional analysis.

Restricted access

This paper develops an instrumental analytical approach for detection of fourteen polycyclic aromatic hydrocarbons (PAHs) in edible oil samples using gel permeation chromatography (GPC) and ultra-high performance liquid chromatography (UHPLC) coupled with diode array detector (DAD), and fluorescence detector (FLD). The GPC was used to remove triglycerides from edible oil samples. The extracted samples were then detected using UHPLC—DAD—FLD. In order to obtain good separation and high reproducibility, the UHPLC—DAD—FLD experimental condition was optimized. The PAHs including three groups of isomeric PAHs can be separated completely in 12 min using BEH Shield RP 18 column with a suitable gradient elution program. The mean recoveries were in the range of 73–110% with an acceptable reproducibility (RSD < 10%, n = 3). During real sample analysis, the method can decrease the chance of false positives with both DAD and FLD being used simultaneously. The results indicate that the approach is simple, easy, and acceptably reproducible, thereby showing great potential as a method for detection of fourteen PAHs contained in edible oil samples.

Open access
Cereal Research Communications
Authors:
I. Baracskai
,
G. Balázs
,
L. Liu
,
W. Ma
,
M. Oszvald
,
M. Newberry
,
S. Tömösközi
,
L. Láng
,
Z. Bedő
, and
F. Békés

The glutenin allele gene-pool, the distribution of the individual alleles on the 6 loci coding for glutenin subunits and their combinations were determined in a sample population containing 107 cultivars bred and grown in Martonvásár, Hungary at the Agricultural Research Institute of the Hungarian Academy of Sciences. The database is based on the results of three independent analytical procedures carried out using the traditional SDS-PAGE based allele identification, the state-of-art MALDI-TOF technology and the high throughput capillary electrophoresis based on the lab-on-a-chip technique. The usefulness of integrating the information on both HMW GS and LMW GS allelic composition for future genetic and technological improvement is discussed.

Restricted access

Thinopyrum ponticum is particularly a valuable source of genes for wheat improvement. A novel wheat-Th. ponticum addition line, 1–27, was identified using cytology, SSR, ESTSSR, EST-STS and PCR-based landmark unique gene (PLUG) markers in this study. Cytological studies showed that 1–27 contained 44 chromosomes and formed 22 bivalents at meiotic metaphase I. Genomic in situ hybridization (GISH) analysis indicated that two chromosomes from Th. ponticum had been introduced into 1–27 and that these two chromosomes could form a bivalent in wheat background. Such results demonstrated that 1–27 was a disomic addition line with 42 wheat chromosomes and a pair of Th. ponticum chromosomes. One SSR marker (BARC235), one EST-STS marker (MAG3284) and 8 PLUG markers (TNAC1210, TNAC1787, TNAC1803, TNAC1805, TNAC1806, TNAC1821, TNAC1867 and TNAC1957), which were all from wheat chromosome group 7, produced the specific band in Th. ponticum and 1–27, indicating that the introduced Th. ponticum chromosomes belonging to the group 7 of wheat. Sequence analysis on specific bands from Th. ponticum and 1–27 amplified using the PLUG marker TNAC1867 further confirmed this result. The 1–27 addition line was also observed to be high resistant to powdery mildew though it is not clear if the resistance of 1–27 inherited from Th. ponticum. This study provided some useful information for effective exploitation of the source of genetic variability in wheat breeding.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors:
M. Donaldson
,
Rebecca Stevens
,
B. E. Lang
,
Juliana Boerio-Goates
,
B. F. Woodfielda
,
R. L. Putnam
, and
Alexandra Navrotsky

Summary As part of a larger study of the physical properties of potential ceramic hosts for nuclear wastes, we report the molar heat capacity of brannerite (UTi2O6) and its cerium analog (CeTi2O6) from 10 to 400 K using an adiabatic calorimeter. At 298.15 K the standard molar heat capacities are (179.46±0.18) J K-1 mol-1 for UTi2O6  and (172.78±0.17) J K-1 mol-1 for CeTi2O6. Entropies were calculated from smooth fits of the experimental data and were found to be (175.56±0.35) J K-1 mol-1 and (171.63±0.34) J K-1 mol-1 for UTi2O6 and CeTi2O6, respectively. Using these entropies and enthalpy of formation data reported in the literature, Gibb’s free energies of formation from the elements and constituent oxides were calculated. Standard free energies of formation from the elements are (-2814.7±5.6) kJ mol-1 for UTi2O6 and (-2786.3±5.6) kJ mol-1 for CeTi2O6. The free energy of formation from the oxides at T=298.15 K are (-5.31±0.01) kJ mol-1 and (15.88±0.03) kJ mol-1 for UTi2O6 and CeTi2O6, respectively.

Restricted access
Cereal Research Communications
Authors:
K. Tremmel-Bede
,
P. Mikó
,
M. Megyeri
,
G. Kovács
,
S. Howlett
,
B. Pearce
,
M. Wolfe
,
F. Löschenberger
,
B. Lorentz
,
L. Láng
,
Z. Bedő
, and
M. Rakszegi

Six cropping populations, three variety mixtures and one diversity population were developed from winter wheat varieties and studied for physical, compositional and end-use quality traits for three years (2011–2013) under different European climatic and management conditions in order to study the stability of these traits resulted by the genetic diversity. The beneficial compositional and nutritional properties of the populations were assessed, while variation and stability of the traits were analysed statistically. No significant differences were found among the populations in low-input and organic management farming systems in the physical, compositional and processing properties, but there was a difference in the stability of these traits. Most of the populations showed higher stability than the control wheat variety, and populations developed earlier had higher stability than those developed later. Furthermore, some populations were found to be especially unstable for some traits at certain sites (mostly at Austrian, Swiss and UK organic sites). Protein content of the populations was high (13.0–14.7%) without significant difference among them, but there was significant variation in their gluten content (28–36%) and arabinoxylan content (14.6–20.3 mg/g). The most outstanding population for both protein and arabinoxylan content was a Hungarian cropping population named ELIT-CCP. It was concluded that the diversity found in the mixtures and CCPs have stabilizing effect on the quality parameters, but a higher stability was observed under low-input than under organic conditions. These results could be beneficial not only for breeders but also for the consumers in the long run.

Restricted access