Search Results

You are looking at 21 - 30 of 106 items for

  • Author or Editor: M. Souza x
  • Refine by Access: All Content x
Clear All Modify Search
Journal of Thermal Analysis and Calorimetry
Authors: M. A. F. Souza, R. A. Candeia, S. J. G. Lima, M. R. Cassia-Santos, I. M. G. Santos, E. Longo, and A. G. Souza
Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Hiléia K. S. Souza, V. R. da Silveira, F. M. M. Borges, Dulce M. A. Melo, H. Scatena Jr., O. A. de Oliveira, and A. G. Souza

Abstract

Thermal behavior of rare earth nitrate complexes with 2-azacyclononanone (AZA) with Ln(NO3)3·3(AZA) composition (where Ln=Gd, Er and Ho) was analyzed in kinetic point of view. Kinetic parameters were calculated from thermogravimetric data. All obtained results were similar. The first decomposition step was representative to the loss of ligand and the residue was essentially Ln2O3. Furthermore, a reaction path was proposed for the thermal decomposition of the Ln(NO3)3·3(AZA).

Restricted access

Abstract  

The thermal decomposition reactions of crystalline chelates of general formula Ln(thd)3 (Ln=La,Pr, Nd, Sm and Gd; thd=2,2,6,6-tetramethyl-3,5-heptanedione) have been studied by isothermal thermogravimetry. Several models were proposed initially to calculate the kinetic parameters by isothermal method, thus the time reduced method was used to define the best kinetic models. The Avrami–Erofeev (Am=2, 3 and 4) and R1 and R2 models presented good agreement with experimental data, as well as, linear correlation coefficient (r) and standard deviation (s).

Restricted access

Abstract  

The kinetics of thermal decomposition of solid In(S2CNR2)3 complexes, (R=CH3, C2H5, n-C3H7,i-C3H7, n-C4H9 and i-C4H9), has been studied using isothermal and non-isothermal thermogravimetry. Superimposed TG/DTG/DSC curves show that thermal decomposition reactions occur in the liquid phase, except for the In(S2CNMe2)3 and In(S2CNPri 2)3 compounds.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: S. Silva, M. Conceiçăo, A. Souza, S. Prasad, M. Silva, V. Fernandes, A. Araújo, and F. Sinfrônio

Abstract  

The powder and the bran of algaroba pods, submitted to drying temperatures of 55, 65, 75, 85, 95 and 105C, were studied by conventional and thermogravimetric methods. The dynamic thermogravimetric curves of the samples indicated the following thermal stability order: 105>55>65>95>85>75C. The powder and the bran of algaroba pods, dried at 55C, presented protein content higher and isothermal thermogravimetric profiles comparable. The calorimetric curves of samples, dried at 55C, indicated the gelatinization of starch.

Restricted access

Abstract  

The thermal decomposition kinetics of the solid complexes Cd(S2 CNR2 )2 , where R =C2 H5 , n -C3 H7 , n -C4 H9 or iso -C4 H9 , was studied by using isothermal and non-isothermal thermogravimetry. The superimposed TG/DTG/DSC curves revealed that thermal decomposition reactions occur in the liquid phase. The kinetic model that best fitted the experimental isothermal TG data was the one-dimensional phase-boundary reaction-controlled process R1 . The thermal analysis data suggested the thermal stability sequence Cd(S2 CNBun 2 )2 >Cd(S2 CNPrn 2 )2 >Cd(S2 CNBui 2 )2 >Cd(S2 CNEt2 )2 , which accords with the sequence of stability of the apparent activation energies.

Restricted access

Abstract  

The synthesis and the characterization of Al2O3-based nanocrystalline inorganic pigments are reported. The pigments were synthesized by the polymeric precursor (Pechini method) using Cr2O3 as chromophore. XRD results only evidenced the corundum phase. The average particle size was about 34 nm. The samples were also characterized by differential scanning calorimetry (DSC) and thermogravimetry (TG), and CIE-L*a*b* calorimetry. The pigments obtained in this work presented different colors, ranging from green to rose.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Adney Luís A. da Silva, Guilherme G. G. Castro, and Mariana M. V. M. Souza

Abstract

Lanthanum strontium chromite (LSC) powders were synthesized by the combustion method, using five different fuels (urea, glycine, ethylene glycol, α-alanine, and citric acid). The ignition of the reagent mixture with urea takes a longer time, and more gases are released by combustion. A calcination step is essential for a good crystallization of the perovskite phase. X-ray diffraction patterns showed formation of perovskite phase and a small amount of SrCrO4 for the sample synthesized with urea after calcination. The crystallite sizes are in the range of 23–33 nm. Scanning electron microscopy revealed the porosity of the powders and the presence of agglomerates, formed by fine particles of different shapes. Thermogravimetric analysis showed a large mass loss for the sample synthesized with citric acid, probably caused by the absence of ignition, with primary polymerization of the precursor reagents.

Restricted access

Abstract  

Biodiesel is a non-toxic biodegradable fuel that consists of alkyl esters produced from renewable sources, vegetal oils and animal fats, and low molecular mass alcohols, and it is a potential substitute for petroleum-derived diesel. Depending on the raw materials used, the amount of unsaturated fatty acids can vary in the biodiesel composition. Those substances are widely susceptible to oxidation processes, yielding polymeric compounds, which are harmful to the engines. Based on such difficulty, this work aims to evaluate the antioxidant activity of cashew nut shell liquid (cardanol), as additive for cotton biodiesel. The oxidative stability was investigated by the pressure differential scanning calorimetry (PDSC) and UV/Vis spectrophotometer techniques. The evaluated samples were: as-synthesized biodiesel — Bio T0, additivated and heated biodiesel — Bio A (800 ppm L−1 of hydrogenated cardanol, 150°C for 1 h), and a heated biodiesel — Bio B (150°C, 1 h). The oxidative induction time (OIT) analyses were carried out employing the constant volume operation mode (203 psi oxygen) at isothermal temperatures of 80, 85, 90, 100°C. The high pressure OIT (HPOIT) were: 7.6, 15.7, 22.7, 64.6, 124.0 min for Bio T0; 41.5, 77.0, 98.6, 106.6, 171.9 min for Bio A and 1.7, 8.2, 14.8, 28.3, 56.3 min for Bio B. The activation energy (E) values for oxidative processes were 150.0±1.6 (Bio T0), 583.8±1.5 (Bio A) and 140.6±0.1 kJ mol−1(Bio B). For all samples, the intensities of the band around 230 nm were proportional to the inverse of E, indicating small formation of hyper conjugated compounds. As observed, cardanol has improved approximately four times the cotton biodiesel oxidative stability, even after the heating process.

Restricted access

Abstract  

SnO2-based materials are used as sensors, catalysts and in electro–optical devices. This work aims to synthesize and characterize the SnO2/Sb2O3-based inorganic pigments, obtained by the polymeric precursor method, also known as Pechini method (based on the metallic citrate polymerization by means of ethylene glycol). The precursors were characterized by thermogravimetry (TG) and differential thermal analysis (DTA). After characterization, the precursors were heat-treated at different temperatures and characterized by X-ray diffraction. According to the TG/DTA curves basically two-step mass loss process was observed: the first one is related to the dehydration of the system; and the second one is representative to the combustion of the organic matter. Increase of the heat treatment temperature from 500 to 600C and 700C resulted higher crystallinity of the formed product.

Restricted access