Search Results

You are looking at 31 - 32 of 32 items for

  • Author or Editor: C. Ribeiro x
  • Refine by Access: All Content x
Clear All Modify Search
Journal of Thermal Analysis and Calorimetry
Authors: Edjane F. B. Silva, Marcílio P. Ribeiro, Luzia P. F. C. Galvão, Valter J. Fernandes, and Antonio S. Araujo

Abstract

Degradation of low density polyethylene (LDPE) was studied for the pure polymer and mixed with silicoaluminophosphate SAPO-11 catalyst. SAPO-11 was synthesized by hydrothermal method using di-isoprolpylamine as structure template, and characterized by XRD and SEM. From X-ray diffraction, it was observed that SAPO-11 was obtained with high crystallinity. Using the model-free kinetics, proposed by Vyazovkin, the activation energies were determined for the process of polymer degradation. It was found that the degradation process of 90% of LDPE mixed with SAPO-11 over a period of 1 h, occurred at a temperature of 378 °C, while for the pure LDPE, the temperature was increased to 434 °C in the same period of time and conversion, indicating that SAPO-11 was an effective catalyst for the degradation of LDPE. The activation energy for the degradation of pure LDPE was equivalent to 251 kJ mol−1. Also, when the SAPO-11 was mixed with the polymer, this value was decreased to 243 kJ mol−1.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Edjane F. B. Silva, Marcílio P. Ribeiro, Ana C. F. Coriolano, Ana C. R. Melo, Anne G. D. Santos, Valter J. Fernandes Jr., and Antonio S. Araujo

Abstract

Thermogravimetry was applied in order to investigate the catalytic degradation of heavy oil (15.4oAPI) over silica-based MCM-41 mesoporous molecular sieve. This material was synthesised by the hydrothermal method, using cetyltrimethylammonium bromide as organic template. The physicochemical characterization by nitrogen adsorption, X-ray diffraction, and thermogravimetry, showed that the obtained material presents well-defined structure, with a uniform hexagonal arrangement. The thermal and catalytic degradation of heavy oil was performed by thermogravimetric measurements, in the temperature range from 30 to 900 °C, at heating rates of 5, 10, and 20 °C min−1. By using the model-free kinetics, proposed by Vyazovkin, it was determined that the activation energy to degrade the heavy oil was ca. 128 kJ mol−1, and for degradation of oil in presence of MCM-41, this value decreased to 69 kJ mol−1, indicating the performance of the mesoporores catalyst for the degradation process.

Restricted access