Search Results

You are looking at 31 - 38 of 38 items for

  • Author or Editor: F. Móricz x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

We prove the following theorem. Assume fL (R 2) with bounded support. If f is continuous at some point (x 1,x 2) ∈ R 2, then the double Fourier integral of f is strongly q-Cesro summable at (x 1,x 2) to the function value f(x 1,x 2) for every 0 < q < ∞. Furthermore, if f is continuous on some open subset
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{G}$$ \end{document}
of R 2, then the strong q-Cesro summability of the double Fourier integral of f is locally uniform on
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{G}$$ \end{document}
.
Restricted access
Restricted access