Search Results

You are looking at 31 - 40 of 41 items for

  • Author or Editor: F. Zhao x
  • Refine by Access: All Content x
Clear All Modify Search
Acta Alimentaria
Authors:
X. Bai
,
H.F. Gao
,
X. Li
,
Y.L. Li
,
M.Z. Lan
,
L. Li
,
Z.D. Zhao
,
Z.B. Li
, and
J. Wang

Abstract

As research advances, it is generally acknowledged that non-Saccharomyces yeast contribute to the addition of aromatic compounds during mead fermentation. In this experiment, eight different non-Saccharomyces strains and Saccharomyces cerevisiae co-fermentation, their aroma composition, and basic physicochemical parameters were investigated. More than 30 compounds with favourable impact were discovered using solid-phase microextraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS). Co-fermentation of non-Saccharomyces spp. and S. cerevisiae can affect the concentration of volatile compounds, so that the mead presents different aroma characteristics. Co-fermented meads of Wickerhamomyces anomalus strains and S. cerevisiae (Wa 27-Sc and Wa 5-Sc) had higher alcohol, acids, aldehyde, and ester concentrations than those fermented with S. cerevisiae alone. In terms of taste, Wa 27-Sc was superior to Wa 5-Sc. Overall, the Wa 27-Sc received the highest score for its strong secondary aroma and good mouthfeel. The results show that the W. anomalus Wa 27 strain has a good potential to produce high quality mead.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors:
R. C. Moore
,
M. Gasser
,
N. Awwad
,
K. C. Holt
,
F. M. Salas
,
A. Hasan
,
M. A. Hasan
,
H. Zhao
, and
C. A. Sanchez

Summary  

The MARC-VI conference served as an excellent setting for a session organized to present and discuss the problems in nuclear science manpower and education. A panel discussion and contributed papers reflected the world-wide situation. This paper presents the major points of the panel discussion. As a result, a resolution on the current situation of nuclear chemistry and radiochemistry was drafted and endorsed by the conference attendees.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors:
F. McDaniel
,
S. Matteson
,
J. Anthony
,
D. Weathers
,
J. Duggan
,
D. Marble
,
I. Hassan
,
Z. Zhao
,
A. Arrale
, and
Y. Kim

Abstract  

An Accelerator Mass Spectrometry (AMS) facility has been assembled at the University of North Texas (UNT) in collaboration with Texas Instruments, Inc. The UNT AMS facility is used primarily for the high sensitivity determination of trace elements of stable isotopes in materials. Particle accelerators, in conjunction with magnetic (momentum/charge) and electrostatic (energy/charge) spectrometers and particle energy detectors, may be used to measure rare isotopes at concentrations as low as one part in 1012 or 1010 atoms/cm3.

Restricted access

Abstract  

Effects of fullerenes including FS, EFS and pure C60 on thermal behaviors of polyethylene glycol (PEG) have been studied by employing thermogravimetry-differential thermogravimetry (TG-DTG), differential scanning calorimeter (DSC) and off-line furnace-type pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The products were collected by Cambridge filter pad which was widely used in analyzing the combustion products of cigarette. The results showed that the addition of fullerenes obviously restrained the thermal decomposition of PEG. The initial decomposition temperatures (IDT) and maximum decomposition peak temperatures (MDT) were evidently postponed by the addition of fullerenes. Pyrolysis products with one or two hydroxyl end groups obviously increased with the addition of 10% C60. The reasons of the changes were discussed from the aspects of reaction mechanisms.

Restricted access

Objectives

Impaired intestinal barrier function has been demonstrated in the pathophysiology of diarrhea-predominant irritable bowel syndrome (IBS-D). This study aimed to describe the intestinal ultrastructural findings in the intestinal mucosal layer of IBS-D patients.

Methods

In total, 10 healthy controls and 10 IBS-D patients were analyzed in this study. The mucosa of each patient’s rectosigmoid colon was first assessed by confocal laser endomicroscopy (CLE); next, biopsied specimens of these sites were obtained. Intestinal tissues of IBS-D patients and healthy volunteers were examined to observe cellular changes by transmission electron microscopy (TEM).

Results

CLE showed no visible epithelial damage or inflammatory changes in the colonic mucosa of IBS-D compared with healthy volunteers. On transmission electron microscopic examination, patients with IBS-D displayed a larger apical intercellular distance with a higher proportion of dilated (>20 nm) intercellular junctional complexes, which was indicative of impaired mucosal integrity. In addition, microvillus exfoliation, extracellular vesicle as well as increased presence of multivesicular bodies were visible in IBS-D patients. Single epithelial cells appeared necrotic, as characterized by cytoplasmic vacuolization, cytoplasmic swelling, and presence of autolysosome. A significant association between bowel habit, frequency of abdominal pain, and enlarged intercellular distance was found.

Conclusion

This study showed ultrastructural alterations in the architecture of intestinal epithelial cells and intercellular junctional complexes in IBS-D patients, potentially representing a pathophysiological mechanism in IBS-D.

Restricted access
Cereal Research Communications
Authors:
N. Zhang
,
R.Q. Pan
,
J.J. Liu
,
X.L. Zhang
,
Q.N. Su
,
F. Cui
,
C.H. Zhao
,
L.Q. Song
,
J. Ji
, and
J.M. Li

Plants with deficiency in Gibberellins (GAs) biosynthesis pathway are sensitive to exogenous GA3, while those with deficiency in GAs signaling pathway are insensitive to exogenous GA3. Thus, exogenous GA3 test is often used to verify whether the reduced height (Rht) gene is involved in GAs biosynthesis or signaling pathway. In the present study, we identified the genetic factors responsive to exogenous GA3 at the seedling stage of common wheat and analyzed the response of the plant height related quantitative trait loci (QTL) to GA3 to understand the GAs pathways the Rht participated in. Recombinant inbred lines derived from a cross between KN9204 and J411 with different response to exogenous GA3 were used to screen QTL for the sensitivity of coleoptile length (SCL) and the sensitivity of seedling plant height (SSPH) to exogenous GA3. Two additive QTL and two pairs of epistatic QTL for SCL were identified, meanwhile, two additive QTL and three pairs of epistatic QTL for SSPH were detected. For the adult plant height (PH) investigated in two environments, six additive QTL were identified. Three QTL qScl-4B, qSsph-4B and qPh-4B were mapped in one cluster near the functional marker Rht-B1b. When PH were conditional on SSPH, the absolute additive effect value of qPh-4B and qPh-6B were reduced, suggesting that the Rhts in both two QTL were insensitive to exogenous GA3, while the additive effect values of qPh-2B, qPh-3A, qPh-3D and qPh-5A were not significantly changed, indicating that the Rhts in these QTL were sensitive to exogenous GA3, or they were not expressed at the seedling stage.

Restricted access

To study the development of starch granules in polyploid wheats, we investigated the expression of starch synthetic genes between the synthetic hexaploid wheat SHW-L1, its parents T. turgidum AS2255 and diploid Ae. tauschii AS60. The synthetic hexaploid wheat SHW-L1 showed significantly higher starch content and grain weight than its parents. Scanning electron microscopy (SEM) showed that SHW-L1 rapidly developed starch granules than AS2255 and AS60. The amount of B-type granule in AS60 was less than that in SHW-L1 and AS2255. RT-qPCR result showed that the starch synthetic genes AGPLSU1, AGPLSU2, AGPSSU1, AGPSSU2, GBSSI, SSIII, PHO1 and PHO2 expressed at earlier stages with larger quantity in SHW-L1 than in its parents during wheat grain development. The expression of the above mentioned genes in AS60 was slower than in SHW-L1 and AS2255. The expression pattern of starch synthase genes was also associated with the grain weight and starch content in all three genotypes. The results suggested that the synthetic hexaploid wheat inherited the pattern of starch granule development and starch synthase gene expression from tetraploid parent. The results suggest that tetraploid wheat could plays more important role for starch quality improvement in hexaploid wheat.

Restricted access

Shuganjieyu (SGJY) capsule is a classical formula widely used in Chinese clinical application. In this paper, an ultra-performance liquid chromatography coupled with electrospray ionization and ion trap mass spectrometry has been established to separate and identify the chemical constituents of SGJY and the multiple constituents of SGJY in rats. The chromatographic separation was performed on a C18 RRHD column (150 × 2.1 mm, 1.8 μm), while 0.1% formic acid–water and 0.1% formic acid–acetonitrile was used as mobile phase. Mass spectral data were acquired in both positive and negative modes. On the basis of the characteristic retention time (R t) and mass spectral data with those of reference standards and relevant references, 73 constituents from the SGJY and 15 ingredients including 10 original constituents and 5 metabolites from the rat plasma after oral administration of SGJY were identified or tentatively characterized. This study provided helpful chemical information for further pharmacology and active mechanism research on SGJY.

Open access
Journal of Behavioral Addictions
Authors:
Yihong Zhao
,
Martin P. Paulus
,
Susan F. Tapert
,
Kara S. Bagot
,
R. Todd Constable
,
H. Klar Yaggi
,
Nancy S. Redeker
, and
Marc N. Potenza

Abstract

Background and Aims

The precise roles of screen media activity (SMA) and sleep problems in relation to child/adolescent psychopathology remain ambiguous. We investigated temporal relationships among sleep problems, SMA, and psychopathology and potential involvement of thalamus-prefrontal-cortex (PFC)-brainstem structural covariation.

Methods

This study utilized data from the Adolescent Brain Cognitive Development study (n = 4,641 ages 9–12) at baseline, Year1, and Year2 follow-up. Cross-Lagged Panel Models (CLPMs) investigated reciprocal predictive relationships between sleep duration/problems, SMA, and psychopathology symptoms. A potential mediating role of baseline Thalamus-PFC-brainstem covariation on SMA-externalizing relationships was examined.

Results

Participants were divided into discovery (n = 2,359, 1,054 girls) and replication (n = 2,282, 997 girls) sets. CLPMs showed 1) bidirectional associations between sleep duration and SMA in late childhood, with higher frequency SMA predicting shorter sleep duration (β = −0.10 [95%CI: −0.16, −0.03], p = 0.004) and vice versa (β = −0.11 [95%CI: −0.18, −0.05], p < 0.001); 2) externalizing symptoms at age 10–11 predicting sleep problems (β = 0.11 [95%CI: 0.04, 0.19], p = 0.002), SMA (β = 0.07 [95%CI: 0.01, 0.13], p = 0.014), and internalizing symptoms (β = 0.09 [95%CI: 0.05, 0.13], p < 0.001) at age 11–12; and 3) externalizing behavior at age 10-11 partially mediating the relationship between baseline thalamus-PFC-brainstem covariation and SMA at age 11–12 (indirect effect = 0.032 [95%CI: 0.003, 0.067], p-value = 0.030). Findings were replicable.

Conclusion

We found bi-directional SMA-sleep-duration associations in late childhood. Externalizing symptoms preceded future SMA and sleep disturbances and partially mediated relationships between structural brain covariation and SMA. The findings emphasize the need for understanding individual differences and developing and implementing integrated strategies addressing both sleep concerns and screen time to mitigate potential impacts on psychopathology.

Open access
Journal of Thermal Analysis and Calorimetry
Authors:
Li-Fang Song
,
Cheng-Li Jiao
,
Chun-Hong Jiang
,
Jian Zhang
,
Li-Xian Sun
,
Fen Xu
,
Qing-Zhu Jiao
,
Yong-Heng Xing
,
F. L. Huang
,
Yong Du
,
Zhong Cao
,
Fen Li
, and
Jijun Zhao

Abstract

One-three-dimensional metal-organic frameworks Mg1.5(C12H6O4)1.5(C3H7NO)2 (MgNDC) has been synthesized solvothermally and characterized by single crystal XRD, powder XRD, FT-IR spectra. The low-temperature molar heat capacities of MgNDC were measured by temperature modulated differential scanning calorimetry (TMDSC) over the temperature range from 205 to 470 K for the first time. No phase transition or thermal anomaly was observed in the experimental temperature range. The thermodynamic parameters of MgNDC such as entropy and enthalpy relative to reference temperature of 298.15 K were derived based on the above molar heat capacities data. Moreover, the thermal stability and decomposition of MgNDC was further investigated through thermogravimetry (TG)–mass spectrometer (MS). Three stages of mass loss were observed in the TG curve. TG–MS curve indicated that the oxidative degradation products of MgNDC are mainly H2O, CO2, NO, and NO2.

Restricted access