Search Results

You are looking at 31 - 35 of 35 items for :

  • Author or Editor: H. Sun x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

In this paper, organic phase change materials (PCM)/Ag nanoparticles composite materials were prepared and characterized for the first time. The effect of Ag nanoparticles on the thermal conductivity of PCM was investigated. 1-tetradecanol (TD) was selected as a PCM. A series of nano-Ag-TD composite materials in aqueous solution were in-situ synthesized and characterized by means of thermal conductivity evaluation method, TG-DSC, IR, XRD and TEM. The results showed that the thermal conductivity of the composite material was enhanced as the loading of Ag nanoparticles increased. The composite materials still had relatively large phase change enthalpy. Their phase change enthalpy could be correlated linearly with the loading of TD, but their phase change temperature was a little bite lower than that of pure TD. The thermal stability of the composite materials was close to that of pure TD. It appeared that there was no strong interaction between the Ag nanoparticles and the TD. Furthermore, the experiment results indicated that the Ag nanoparticles dispersed uniformly in the materials, occurred in the forms of pure metal.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors:
F. Xu
,
L. Sun
,
J. Zhang
,
Y. Qi
,
L. Yang
,
H. Ru
,
C. Wang
,
X. Meng
,
X. Lan
,
Q. Jiao
, and
F. Huang

Abstract  

Heat capacities of the carbon nanotubes (CNTs) with different sizes have been measured by modulated temperature differential scanning calorimetry (MDSC) and reported for the first time. The results indicated the values of C p increased with shortening length of CNTs when the diameters of CNTs were between 60 and 100 nm. However, the values of C p of CNTs were not affected by their diameter when the lengths of CNTs were 1–2 um, or not affected by the length of CNTs when their diameters were below 10 nm. The thermal stabilities of the CNTs have been studied by TG-DTG-DSC. The results of TG-DTG showed that thermal stabilities of CNTs were enhanced with their diameters increase. With lengths increase, the thermal stabilities of CNTs increased when their diameters were between 60 and 100 nm, but there is a slight decrease when their diameters were less than 60 nm. The further DSC analyses showed both released heat and T onset increased with the increase of CNTs diameters, which confirms the consistency of the results from both TG-DTG and DSC on CNTs thermal stability.

Restricted access

Thermodynamic investigation of room temperature ionic liquid

The heat capacity and thermodynamic functions of BMIPF6

Journal of Thermal Analysis and Calorimetry
Authors:
Z. Zhang
,
T. Cui
,
J. Zhang
,
H. Xiong
,
G. Li
,
L. Sun
,
F. Xu
,
Z. Cao
,
F. Li
, and
J. Zhao

Abstract  

The molar heat capacities of the room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluoroborate (BMIPF6) were measured by an adiabatic calorimeter in temperature range from 80 to 390 K. The dependence of the molar heat capacity on temperature is given as a function of the reduced temperature (X) by polynomial equations, C P,m (J K−1 mol−1) = 204.75 + 81.421X − 23.828 X 2 + 12.044X 3 + 2.5442X 4 [X = (T − 132.5)/52.5] for the solid phase (80–185 K), C P,m (J K−1 mol−1) = 368.99 + 2.4199X + 1.0027X 2 + 0.43395X 3 [X = (T − 230)/35] for the glass state (195 − 265 K), and C P,m (J K−1 mol−1) = 415.01 + 21.992X − 0.24656X 2 + 0.57770X 3 [X = (T − 337.5)/52.5] for the liquid phase (285–390 K), respectively. According to the polynomial equations and thermodynamic relationship, the values of thermodynamic function of the BMIPF6 relative to 298.15 K were calculated in temperature range from 80 to 390 K with an interval of 5 K. The glass transition of BMIPF6 was measured to be 190.41 K, the enthalpy and entropy of the glass transition were determined to be ΔH g = 2.853 kJ mol−1 and ΔS g = 14.98 J K−1 mol−1, respectively. The results showed that the milting point of the BMIPF6 is 281.83 K, the enthalpy and entropy of phase transition were calculated to be ΔH m = 20.67 kJ mol−1 and ΔS m = 73.34 J K−1 mol−1.

Restricted access
Restricted access
Journal of Thermal Analysis and Calorimetry
Authors:
Z. Xiao
,
D. Liu
,
C. Wang
,
Z. Cao
,
X. Zhan
,
Z. Yin
,
Q. Chen
,
H. Liu
,
F. Xu
, and
L. Sun

Abstract  

The effect of mechanical alloying on Zn-Sb alloy system is investigated with X-ray diffraction (XRD), laser grain size analysis and differential scanning calorimetry (DSC) respectively. The results of laser particle size analysis shows that the particle size decreases with increasing of the grinding time between 0 and 24 h. XRD and DSC results indicate that longer the grinding time of Zn-Sb is, the more content of Zn4Sb3 become in the product in this process.

Restricted access