Search Results

You are looking at 31 - 40 of 45 items for

  • Author or Editor: K. Park x
  • Refine by Access: All Content x
Clear All Modify Search
Journal of Radioanalytical and Nuclear Chemistry
Authors:
G. Kim
,
W. Hong
,
H. Woo
,
J. Kim
,
C. Eum
,
J. Chang
, and
K. Park

Abstract  

A nanosecond proton bunching system has been constructed at Korea Institute of Geoscience and Mineral Resources (KIGAM). This pulsed ion beam will be converted into corresponding duration of neutron pulse, which can reduce the scattered neutron background during neutron spectroscopy. The pulsed beam is obtained by deflection and double bunching by RF field. RF fields are applied to deflection and bunching electrodes as 2 kV p-p, 4 MHz and 2 kV p-p, 8 MHz, respectively. A push-pull RF amplifier has been designed and constructed with a maximum output power of 300 W continuous wave (CW) between 2 and 30 MHz. The main parameters of bunching beam were as follows: 8 MHz repetition rate, 2 ns FWHM, approximately 20% of duty factor and the maximum energy spread of 2 keV within a pulse.

Restricted access

Abstract  

Hydrogen gas (H2) was produced by gamma-irradiation of pure water in the presence of various TiO2 catalysts. Most catalysts used in this work largely enhanced the radiolytic decomposition of water and subsequent production of H2. The different activity of catalysts was characterized by X-ray diffraction (XRD) patterns and by electron paramagnetic resonance (EPR) spectra. The addition of methanol as a sacrificing agent further increased the H2 production by scavenging hydroxyl radicals and the scavenging activity was directly identified using an EPR/spin-trapping technique. Among the catalysts studied, nanosized TiO2 (nTiO2) showed an excellent activity in the production of H2. Furthermore, the addition of EDTA instead of methanol largely increased the H2 production. This is quite promising since waste compounds such as EDTA can be removed with concomitant H2 production

Restricted access

Abstract  

A quantitative analysis of an ancient Buddha statue was performed by external beam Proton Induced X-ray Emission for the purpose of identifying its originality. It is shown how the PIXE method can be applied for archeological study. The elemental composition of the statue is compared with that of several samples with definite ages. The experiment was performed by extracting 2.4 MeV proton beam through a 2 mm diameter collimator and 7.6 m kapton foil to the He atmosphere. X-rays were measured by a Si(Li) detector. The analysed elements were Fe, Cu, Ag, Au and Hg for gold coating and Fe, Ni, Cu, Zn, As, Ag, Sn, Au, Pb and Bi for bronze body.

Restricted access

Abstract  

A (D3C)2O (d6-acetone) target was irradiated with semi-monoenergetic neutrons generated from 9Be(p,n)9B reaction with 20 MeV protons to convert 13C and oxygen nuclides in the target into 14C. With both liquid scintillation counting (LSC) and accelerator mass spectrometry (AMS) we measured the (D3C)2O (d6-acetone) liquid targets, which were combustible and easy to afford CO2 for the AMS measurements. The 14C yield measured by the LSC method turned out to be 80 times larger than that by the AMS method. This large discrepancy may be attributed to the loss of 14C atoms during the sample pretreatment in the AMS method such as combustion and cryogenic trapping of CO2. It means that 14C newly produced by nuclear reactions can exist in various chemical forms, i.e., C3D6O, CO, CO2, hydrocarbons, etc., and a simple sample pretreatment right after production can cause serious isotopic fractionation. Therefore, using the AMS method, extreme caution in sample pretreatment should be exercised when the 14C yield produced immediately by nuclear reaction is measured.

Restricted access

Abstract  

For the instrumental neutron activation analysis of trace impurities in high purity silicon wafer, a modified single comparator method has been applied. The energy distribution of the neutrons at the irradiation position was measured using the two flux monitors, Au and Co, and elemental contents were calculated using the silicon matrix in the wafer as a comparator. This has advantage of reducing the cross contamination from an external monitor during sample preparation and irradiation, the uncertainties from the non-homogeneity of the neutron flux and the error on the weight of comparators. Determination limits for 49 elements were presented under the condition of 72 hours irradiation at a neutron flux of 3.7·1013 n·cm-2·s-1 and 4000 s measurement. The analytical results obtained by this method and the conventional single comparator method were compared and were found to agree well within 5%.

Restricted access

Abstract  

We have measured the cross sections of the 16O(n,t) reactions above 18.1 up to 33.1 MeV in an neutron activation method. H2O (water) as an 16O target was irradiated with semi-monoenergetic neutrons generated from the 9Be(p,n)9B reaction with 25–35 MeV protons. The neutron flux was obtained with the aid of previous study by Uwamino et al. (Nucl Instr Methods A 271:546, 1988). The tritium activities were measured by using the liquid scintillation counting (LSC) method. The present value for the cross section of 16O(n,t) reaction agrees with previous values measured by using the same LSC method at similar neutron energy ranging from 18.1 up to 33.1 MeV.

Restricted access

Abstract  

A study on the separation of lithium isotope was carried out with N4O azacrown ion exchange resin. The lighter6Li isotope concentrated in the solution phase, while the heavier7Li isotope is enriched in the resin phase. Upon column chromatography (0.3 cm I.D.×15.5cm height) using 0.5M NH4Cl as an eluent, single separation factor, α=1.00127 was obtained.

Restricted access

Abstract  

A study on the separation of lithium isotope was carried out with a 1,16-dioxa-4,7,10,13- tetraazacyclooctadecane-4,7,10,13-tetramerrifield peptide resin [N4O2·4M]. The resin having N4O2 as an anchor group has a capacity of 3.8 meq/g. Upon column chromatography [0.15 cm (I.D)×29 cm (height)] using 0.01 M NH4Cl as an eluent, the single separation factor, α=1.038 was obtained by the Glueckauf theory from the elution curve and isotope ratios.

Restricted access

Summary  

It is impossible to detect 14C and 3H by direct methods such as γ-spectroscopy because they are pure b-emitters and thus they are classified as hard to measure nuclides (HTM). In this paper the analysis results of 14C and 3H in the low level radioactive wastes (LLWs), including spent ion exchange resin, evaporated bottom and sludge are presented. The LLWs were generated by three nuclear power plants (NPPs), in Korea all with pressurized water type reactors (PWRs). A simultaneous separation procedure for 14C and 3H in LLWs was established by wet oxidation-acid stripping. A liquid scintillation analyzer was used for the measurement of 14C and 3H. It was found that the recovery of 14C and 3H was 82-99 and 78-103%, respectively, by wet oxidation-acid stripping with diluted standard solutions. At the lowest injection of 14C and 3H, i.e., at 1.44 Bq for 14C and 1.22 Bq for 3H, the minimum detectable activity (MDA) of 14C and 3H was calculated as 0.88 and 0.78 Bq/g, respectively, for the minimum allowable sample weight, using wet oxidation and 16 wt% H2SO4 acid. By the wet oxidation-16 wt% H2SO4 stripping method no interfering nuclides were detected in the trapping solution of 14CO2 and the distillate of 3H. The activity concentration range of 14C in the analyzed samples, i.e., spent ion exchange resin, evaporated bottom and sludge, was 0.17-110,000, 8.4-1380 and 0.1-10,006 Bq/g, respectively, and that of 3H in the same was from no detectable to 769, 134-14,383 and 0.7-4820 Bq/g, respectively.

Restricted access

Summary  

In order to evaluate the use of gamma-ray treatment as a pretreatment to conventional biological methods, the effects of gamma-irradiation on biodegradability (BOD5/COD) of textile and pulp wastewaters were investigated. For all wastewaters studied in this work, the efficiency of treatment based on TOC removal was insignificant even at an absorbed dose of 20 kGy. However, the change of biodegradability was noticeable and largely dependent on the chemical property of wastewaters and the absorbed dose of gamma-rays. For textile wastewaters, gamma-ray treatment increased the biodegradability of desizing effluent due to degradation of polymeric sizing agents such as polyvinyl alcohol. Interestingly, the weight-loss showed the highest value of 0.97 at a relatively low dose of 1 kGy. This may be caused by the degradation of less biodegradable ethylene glycol prior to terephthalic acid decomposition. For pulp wastewater, the gamma-ray treatment did not improve the biodegradability of cooking and bleaching of C/D effluents. However, the biodegradability of bleaching E1 and final effluents was abruptly increased up to 5 kGy then slowly decreased as the absorbed dose was increased. The initial increase of biodegradability may be induced by the decomposition of refractory organic compounds such as chlorophenols, which are known to be the main components of bleaching C/D and final effluents.

Restricted access