Search Results

You are looking at 31 - 40 of 117 items for

  • Author or Editor: L. Liu x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

The thermal behavior and decomposition of kaolinite–potassium acetate intercalation complex was investigated through a combination of thermogravimetric analysis and infrared emission spectroscopy. Three main changes were observed at 48, 280, 323, and 460 °C which were attributed to (a) the loss of adsorbed water, (b) loss of the water coordinated to acetate ion in the layer of kaolinite, (c) loss of potassium acetate in the complex, and (d) water through dehydroxylation. It is proposed that the potassium acetate intercalation complex is stability except heating at above 300 °C. The infrared emission spectra clearly show the decomposition and dehydroxylation of the kaolinite intercalation complex when the temperature is raised. The dehydration of the intercalation complex is followed by the loss of intensity of the stretching vibration bands at region 3600–3200 cm−1. Dehydroxylation is followed by the decrease in intensity in the bands between 3695 and 3620 cm−1. Dehydration is completed by 400 °C and partial dehydroxylation by 650 °C. The inner hydroxyl group remained until around 700 °C.

Restricted access

Saccharomyces cerevisiae MERIT.ferm was used as mono- and mixed-cultures with Williopsis saturnus var. mrakii NCYC500 in mango wine fermentation. A ratio of 1:1000 (Saccharomyces:Williopsis) was chosen for mixed-culture fermentation to enable longer persistence of the latter. The monoculture of S. cerevisiae and mixed-culture was able to ferment to dryness with 7.0% and 7.7% ethanol, respectively. The monoculture of W. mrakii produced 1.45% ethanol. The mango wines fermented by S. cerevisiae alone and the mixed-culture were more yeasty and winey, which reflected their higher amounts of fusel alcohols, ethyl esters and medium-chain fatty acids. The mango wine fermented by W. mrakii alone was much less alcoholic, but fruitier, sweeter, which corresponded to its higher levels of acetate esters.

Restricted access

Summary

A simple hydrolysis method has been developed for determination of phenylethanoid glycosides in Lamiophlomis rotata (L.R.). Different kinds of phenylethanoid glycosides were hydrolyzed in hydrochloric acid solution to produce corresponding phenethyl alcohols and cinnamic acids, mainly containing hydroxytyrosol, homovanillyl alcohol, 3,4-dimethoxyphenethyl alcohol, caffeic acid, fumalic acid and 3,4-dimethoxycinnamic acid. The six analytes could be determined simultaneously by high-performance liquid chromatography (HPLC). The effects of mobile phase, pH and concentration of running buffer, detection wavelength, flow rate and injection volume were also investigated. Under the optimum conditions, the six hydrolyzates could be perfectly separated within 45 min. The response was linear over four orders of magnitude with detection limits (S/N = 3) ranging from 1 × 10−8 to 1.5 × 10−4 mol L−1 for the analytes. The method has been successfully applied to the analysis of real sample Du-Yi-Wei capsule and Qi-Zheng-Yan-Tong patch, with satisfactory results.

Open access

Summary

A simple and rapid capillary electrophoretic procedure for analysis of matrine and oxymatrine in Kushen medicinal preparations has been developed and optimized. Orthogonal design was used to optimize the separation and detection conditions for the two active components. Phosphate concentration, applied potential, organic modifier content, and buffer pH were selected as variable conditions. The optimized background electrolyte contained 70 mM sodium dihydrogen phosphate and 30% acetonitrile at pH 5.5; the separation potential was 20 kV. Each analysis was complete within 5 min. Regression equations revealed linear relationships (r > 0.999) between peak area and amount for each component. The detection limits were 1.29 μg mL−1 for matrine and 1.48 μg mL−1 for oxymatrine. The levels of the two active compounds in two kinds of traditional Chinese medicinal preparation were easily determined with recoveries of 96.57–106.26%. In addition, multiple linear regression and a non-linear model using a radial basis function neural network approach were constructed for prediction of the migration time of oxymatrine. The predicted results were in good agreement with the experimental values, indicating that a radial basis function neural network is a potential means of prediction of separation time in capillary electrophoresis.

Open access

Barley yellow dwarf virus-GAV (BYDV-GAV) is one of the most serious viruses on wheat in China. In this study, five BYDV-GAV isolates collected from five regions in Northwestern China were sequenced. The complete genome sequences generated in this study along with nine genome sequences of BYDV-GAV isolates available in GeneBank were compared and analyzed. The comparative analysis indicated that the complete genomes of BYDV-GAV showed a low level of genetic diversity with nucleotide sequence identities ranging between 97.0% and 99.7%, and the RNA-dependent RNA polymerase gene (ORF1 + ORF2) was the most variable within the complete genome. Phylogenetic analysis indicated that the BYDV-GAV isolates in Northwestern China could be divided into two groups. In addition, two potential recombination events were detected among the 14 BYDV-GAV isolates. This study provided a detailed description of molecular characterization of BYDV-GAV in Northwestern China based on the complete genome sequences, which increased the understanding of genetic diversity of barley yellow dwarf viruses.

Restricted access

In the past decade, researches on Wnt signaling in cell biology have made remarkable progress regarding our understanding of embryonic development, bone formation, muscle injury and repair, neurogenesis, and tumorigenesis. The study also showed that physical activity can reverse age-dependent decline in skeletal muscle, preventing osteoporosis, regenerative neurogenesis, hippocampal function, cognitive ability, and neuromuscular junction formation, and the age-dependent recession is highly correlated with Wnt signaling pathways. However, how the biological processes in cell and physical activity during/following exercise affect the Wnt signaling path of the locomotor system is largely unknown. In this study, we first briefly introduce the important features of the cellular biological processes of exercise in the locomotor system. Then, we discuss Wnt signaling and review the very few studies that have examined Wnt signaling pathways in cellular biological processes of the locomotor system during physical exercise.

Restricted access

Abstract  

A new model has been deduced by assumed autocatalytic reactions. It includes two rate constants, k 1 and k 2, two reaction orders, m and n, and the initial concentration of [OH]. The model proposed has been applied to the curing reaction of a system of bisphenol-S epoxy resin (BPSER), with4,4'-diaminodiphenylmethane (DDM) as a curing agent. The curing reactions were studied by means of differential scanning calorimetry (DSC). Analysis of DSC data indicated that an autocatalytic behavior showed in the curing reaction. The new model was found to fit to the experimental data exactly. Rate constants, k 1 and k 2 were observed to be greater when curing temperature increased. The activation energies for k 1 and k 2 were 95.28 and 39.69 kJ mol–1, respectively. Diffusion control was incorporated to describe the cure in the latter stages.

Restricted access

Abiotic stresses like salinity and abnormally cold environments cause significant yield losses in many crops including wheat. Therefore, concerted efforts are being made by breeders to develop new varieties with salt and cold tolerance to ensure stable yields over varied environments. This study was undertaken to screen six hundred and seventy-seven accessions of international wheat genetic resources to identify lines with high level of tolerance to salinity and cold environments. Based on the results of two years study in different agroecological locations, 51 accessions were classified as salt tolerant and 115 accessions were classified as cold tolerant. Of these, 35 accessions had good agronomic characteristics. Also, there were 39 genotypes with combined tolerance to cold as well as salinity. Thus, there were good lines which can be used directly or as parents for breeding wheat varieties for wide adaptation and high yield. Further analysis of the data showed that early genotypes had good cold tolerance but a poor salt tolerance. It was also observed that small number of both test spikelet and spikelet, short spike length and good seed-plump were positively associated with cold tolerance. Therefore, maturity and spike traits should be taken into considered when selecting wheat lines for wide adaptation breeding.

Restricted access

Abstract

Although the use of aspirin has substantially reduced the risks of cardiovascular events and death, its potential mechanisms have not been fully elucidated. In a previous study, we found that aspirin triggers cellular autophagy. In the present study, we aimed to determine the protective effects of aspirin on human coronary artery endothelial cells (HCAECs) and explore its underlying mechanisms. HCAECs were treated with oxidized low-density lipoprotein (ox-LDL), angiotensin II (Ang-II), or high glucose (HG) with or without aspirin stimulation. The expression levels of endothelial nitric oxide (NO) synthase (eNOS), p-eNOS, LC3, p62, phosphor-nuclear factor kappa B (p-NF-κB), p-p38 mitogen-activated protein kinase (p-p38 MAPK), and Beclin-1 were detected via immunoblotting analysis. Concentrations of soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1) were measured via ELISA. NO levels were determined using the Griess reagent. Autophagic flux was tracked by tandem mRFP-GFP-tagged LC3. Results showed that aspirin increased eNOS level and reduced injury to the endothelial cells (ECs) caused by ox-LDL, Ang-II, and HG treatment in a dose-dependent manner. Aspirin also increased the LC3II/LC3I ratio, decreased p62 expression, and enhanced autophagic flux (autophagosome and autolysosome puncta) in the HCAECs. p-NF-κB and p-p38 mitogen-activated protein kinase inhibition, sVCAM-1 and sICAM-1 secretion, and eNOS activity promotion by aspirin treatment were found to be dependent on Beclin-1. These results suggested that aspirin can protect ECs from ox-LDL-, Ang-II-, and HG-induced injury by activating autophagy in a Beclin-1-dependent manner.

Restricted access

Abstract

With the enhancement of people’s awareness of drinking health, the health factors in Wuliangye-flavour liquor is worth our attention. Bacterial communities in 4 layers of Zaopei from the same fermentation pit and amino acids as major health factors in 4 liquors directly related Zaopeis were investigated by Illumina MiSeq sequencing and liquid chromatography mass spectrometry, respectively. Results indicated that 18 amino acids were detected and 8 dominant bacteria (genus level) were observed. Meanwhile, total amino acids, 11 amino acids (Glu, Asp, Val, etc), bacterial diversity, and the percentages of Lactobacillus and Pseudomonas increased with the increase of Zaopei’s depth; 5 amino acids (Pro, Ser, Phe, etc) and the percentages of Pediococcus and Bacteroides first increased and then decreased with the increase of Zaopei’s depth. Moreover, 11 amino acids were significantly (P < 0.01) and strongly (|ρ| > 0.8) positively correlated with Lactobacillus and Pseudomonas numbers.

Restricted access