Search Results

You are looking at 31 - 40 of 44 items for

  • Author or Editor: P. Reddy x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The present work describes the application of radiotracer technique for studying uptake of arsenic on titanium hydroxide, commercial titanium dioxide (TiO2) powder (anatase) and synthesized mesoporous titania beads in acidic, neutral, and alkaline conditions. Sol–gel templating method was used to prepare titania–polysaccharide composites, with different polymer contents. Mesoporous titania was obtained by heat treatment of the composite beads in a controlled environment. The synthesis process was optimized, using thermogravimetry analysis. X-ray diffraction patterns confirmed the formation of anatase pure phase titania (TiO2) at 700 °C in different environments, and scanning electron microscopy studies confirmed uniform pore size distribution. The effect of surface area, polymer content and pH on uptake of arsenic(III) and (V) on the synthesized titania beads was also investigated. Arsenic(V) was found to be retained quantitatively on the titania beads synthesized from 0.8% polymer content titania–polymer composite precursor in neutral to alkaline conditions. Details of the results obtained are discussed.

Restricted access

Abstract  

Synergism in the extraction of Lu(III) from thiocyanate solutions has been investigated using mixtures of bis-2-ethylhexyl sulfoxide (B2EHSO) and 2-thenoyltrifluoroacetone (HTTA) or di-n-octyl sulfoxide (DOSO) or tri-n-octylphosphine oxide (TOPO) in benzene. For comparison, the synergistic extraction of Lu(III) from perchlorate solutions has also been investigated with a mixture of B2EHSO and HTTA. These extraction data have been analyzed theoretically with the aid of a computer by taking into account complexation of the metal in the aqueous phase by inorganic ligands and plausible complexation in the organic phase. The equilibrium constants of the various product species have been deduced by non-linear regression analysis.

Restricted access

Summary

A stability-indicating gradient reverse-phase liquid chromatographic method was developed for the quantitative determination of process-related impurities and forced degradation products of oxcarbazepine in pharmaceutical formulation. The method was developed by using Inertsil cyano (250 × 4.6 mm) 5 μm column with mobile phase containing a gradient mixture of solvent A (0.01 M sodium dihydrogen phosphate, pH adjusted to 2.7 with orthophosphoric acid and acetonitrile in the ratio of 80:20 v/v) and B (50:40:10 v/v/v mixture of acetonitrile, water, and methanol). The flow rate of mobile phase was 1.0 mL min−1. Column temperature was maintained at 25°C and detection wavelength at 220 nm. Developed reverse-phase high-performance liquid chromatography (RP-HPLC) method can adequately separate and quantitate five impurities of oxcarbazepine, namely imp-A, imp-B, imp-C, imp-D, and imp-E. Oxcarbazepine was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal, and photolytic degradation. Oxcarbazepine was found to degrade significantly in acid, base, and oxidative stress conditions. The degradation products were well resolved from oxcarbazepine and its impurities. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to specificity, linearity, limit of detection and quantification, accuracy, precision, and robustness.

Full access

Summary

A simple, selective, and stability-indicating reverse phase liquid chromatographic method has been developed and validated for the simultaneous determination of impurities and forced degradation products of quetiapine fumarate. The chromatographic separation was achieved on Inertsil-3 C8, 150 mm × 4.6 mm, 5 μm column at 35°C with UV detection at 217 nm using gradient mobile phase at a flow rate of 1.0 mL/min. Mobile phase A contains a mixture of 0.01 M di-potassium hydrogen orthophosphate (pH 6.8) and acetonitrile in the ratio of 80:20 (v/v), respectively, and mobile phase B contains a mixture of 0.01 M di-potassium hydrogen orthophosphate (pH 6.8) and acetonitrile in the ratio of 20:80 (v/v), respectively. The drug product was subjected to the stress conditions of oxidative, hydrolysis (acid and base), hydrolytic, thermal, and photolytic degradation. Quetiapine fumarate was found to degrade significantly in acid, base, and oxidative stress conditions. The degradation products were well resolved from main peak and its impurities. The mass balance was found to be in the range of 96.6–102.2% in all the stressed conditions, thus proved the stability-indicating power of the method. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection and quantification, accuracy, precision, and robustness.

Full access
Journal of Radioanalytical and Nuclear Chemistry
Authors: P. Sarita, G. Naga Raju, A. Pradeep, Tapash Rautray, B. Seetharami Reddy, S. Bhuloka Reddy, and V. Vijayan

Abstract  

Trace elemental imbalance in human beings is postulated to exert action, directly or indirectly, on the carcinogenic process. The objective of this study was to evaluate the levels of trace elements in blood sera of breast cancer patients and analyze their alteration with respect to healthy controls. This work was also intended to establish the role played by the trace elements in carcinogenic process. Particle induced X-ray emission (PIXE) technique was used for trace elemental analysis of blood sera of breast cancer patients and healthy controls. The PIXE measurements were carried out using a 2.5 MeV collimated proton beam from the 3 MV Tandem Pelletron accelerator at Institute of Physics, Bhubaneswar, India. On comparing the trace elemental content in the sera of breast cancer patients with those of control subjects, significant variations were observed in the levels of most of the trace elements. The serum levels of almost all the elements except Fe and Cu were observed to be depressed in cancer patients with respect to normal subjects. However, this variation was significant only for Ti (P < 0.00005), Cr (P < 0.005), Mn (P < 0.0005), Ni (P < 0.01), Zn (P < 0.000001), and Se (P < 0.05). On the other hand, significant elevations were observed in serum Fe (P < 0.05) and Cu (P < 0.005) levels in cancer patients. The findings presented in this paper give guidelines for future study into the possible roles and interactions of essential trace elements in the breast carcinogenic process.

Restricted access

Summary

An isocratic ion-pair reversed phase high-performance liquid chromatography-ultraviolet (RP-HPLC-UV) method for analysis of eberconazole nitrate in bulk and in pharmaceutical dosage forms has been developed and validated. Best separation was achieved on Lichrospher C18 column (250 mm × 4.6 mm, 5 μm) using a mobile phase of 10 mM potassium dihydrogen phosphate containing 10 mM tetra-butyl ammonium hydroxide (pH adjusted to 2.8 with ortho phosphoric acid) and methanol (75:25, v/v) at a flow rate of 1.0 mL min−1. UV detection was performed at 220 nm. The method was validated for specificity, linearity, precision, accuracy, limit of detection, limit of quantification, robustness, and solution stability. The calibration plot was linear over the concentration range of 10–80 μg mL−1 (r 2 = 0.999) and the limits of detection and quantification were 0.3 and 0.9 μg mL−1, respectively. Intra-day and inter-day precisions were 1.13% and 1.67%, respectively. Experimental design was employed to optimize the method. The method was successfully used for analysis of eberconazole nitrate in commercially available cream (Ebernet).

Full access

Abstract  

Simultaneous measurement of gross alpha and gross beta activities by liquid scintillation counting technique using LKB Wallac Quantulus 1220 liquid scintillation counter (LSC) equipped with Pulse Shape Analyzer (PSA) is described. Three sets of pure alpha and pure beta standards simulating the activity concentration values of real samples in terms of α/β activity ratios were used to calibrate the LSC. Calibration methodology for the Quantulus 1220 with respect to the above measurements using 241Am and 90Sr/90Y standards of respective activity concentrations of ~25 dpm and ~104 dpm is described in detail. Also highlighted the need to calibrate the LSC using another set of 241Am and 90Sr/90Y standards of low and high activity concentrations respectively. The practicability and working performance of these calibration plots was checked by the validation trials with test samples spiked with 241Am and 90Sr/90Y covering range of α/β activity ratios from 1:1 to 1:50.

Restricted access

Abstract  

Thorium along with its daughter products present in the soil is one of the major contributors to the external gamma dose in the environment. To establish the dose levels, quantification of thorium contents in soil samples is very important. As a part of pre-operational environmental radiological surveillance, a total of 23 soil and six sand samples were collected from different locations around the proposed nuclear power plant site of Jaitapur, Maharashtra. Thorium concentrations in these samples were determined by instrumental neutron activation analysis (INAA). Samples were irradiated with neutrons in Apsara reactor at a neutron flux of ~5 × 1011 cm−2 s−1 and radioactive assay was carried out using high resolution gamma ray spectrometry. Relative method of INAA was used for quantification of thorium utilizing 311.9 keV gamma ray of 233Pa, the daughter product of 233Th. The concentrations of thorium in the soil and sand samples were in the ranges of 4.0–18.8 and 1.2–6.2 mg kg−1 respectively.

Restricted access

Abstract  

Boron concentration has been determined in groundwater samples, collected from Khuchch, Gujarat, India, by prompt gamma neutron activation analysis (PGNAA) after selective separation and pre-concentration by solvent extraction with 10% 2-ethyl hexane 1,3-diol in CHCl3. Solvent extraction separation helped to eliminate the interfering elements in PGNAA determination of boron. The sensitivity of PGNAA is found to be 18.83 cps/mg B based on the slope of a calibration plot obtained by carrying out measurements on synthetic boric acid samples containing boron in the range of 30–150 μg. Detection limit of the method is 0.2 μg/g counted for 35,000 seconds at a sample size of 15 gram. The precision (relative standard deviation at 1σ level) and accuracy of the method is 5%. The analytical results of the present method agreed well with well-established spectrophotometric determination of boron as boron-curcumin complex and inductively coupled plasma atomic emission spectroscopy (ICP-AES).

Restricted access