Search Results

You are looking at 31 - 40 of 68 items for :

  • Author or Editor: S. Li x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The catalytic and accelerating effects of three coal-burning additives (CBA) on the burning of graphite were studied with the help of thermogravimetric (TG) analysis. The kinetic study on the catalytic oxidation of the graphite doped with CBA was carried out and the results were presented. The results show that the CBA can change the carbon oxidation/combustion course by catalytic action and change the activation energy, thus improving the combustion efficiency.

Restricted access

Abstract  

The crystal C81H78N12O6Cd3 was synthesized and its structure was determined by single crystal X-ray diffraction method. The complex crystallizes in the monoclinic system space group P21/n with cell parameters, a=15.959(4) , b=26.222(3) , c=25.907(6) , β=101.60(2). The non-isothermal kinetics of the crystal was studied by use of non-isothermal TG and DTG curves. The kinetic parameters were analyzed by means of integral and differential methods, and mechanism functions of the thermal decomposition reaction for its second step were proposed. The kinetic equation of thermal decomposition is expressed as: dα/dt=Aexp(-E/RT)1.5(1-α)4/3[1/(1-α)1/3-1]−1. The average values of E(kJ mol−1) and lnA/s−1 are 339.25, 43.95, respectively.

Restricted access
Restricted access

Abstract  

The migration of 99Tc in unsaturated Chinese loess was investigated in-situ with a tracer method. Quartz containing 3H (HTO) and 99Tc (99TcO4 -) was introduced into the bottom of an experimental pit which was then backfilled at the field test site. Then core soil samples were taken and cut vertically into 1 cm long slices. The slice samples were analyzed by liquid scintillation techniques in the laboratory. The results indicate that the migration pattern of 99Tc was quite similar to that of 3H and the vertical diffusion coefficients of 99Tc and 3H were calculated as (4.7±0.4).10-2 cm2/d and (7.8±0.4).10-2 cm2/d, respectively.

Restricted access

Abstract  

The present paper based on experimental results contains discussions and suggestions on the possible use of fine-powder Al2O3 and SiO2 with their original content of microimpurities of up to 40 elements, as multielement standards for neutron activation analysis. For example, activation analysis of As, Au, Ba, Cr, Cs, Fe, Ga, K, Ni, Sb, Sc, Se, Sr, Ta, Th, Ti, U, W, Zn, Zr and the REE La, Ce, Nd, Sm, Eu, Tb, Tm, Yb contained in SiO2 powder off MERCK reagents showed their concentrations to be 0.1 to 5% of those in IAEA standard SL-1. In Al2O3 this level is even lower, approximately 10 times and more for the majority of the above-mentioned elements. As Al2O3 and SiO2 are good sorbents for the majority of elements, additional introduction of some elements may allow more methods of analysis. The homogeneity of Al2O3 and SiO2 samples both in the original state and after introduction of some elements was determined by neutron activation analysis, and the SD did not exceed 1% for an Al2O3 sample weight of 0.1 g, and 2% for SiO2.

Restricted access

Abstract  

The migration of 99Tc in a weak loess aquifer was investigated in-situ with undisturbed aquifer medium columns. The columns were obtained horizontally at a depth of 3236 m in an Underground Research Facility (URF). Quartz containing 3H (HTO) and 99Tc (in the form of 99TcO4 -) was introduced into one end of the columns and the columns were covered tightly. Aquifer water was introduced into the columns directly from an experimental shaft in the UFR. Effluents from the columns were collected and the activity of 3H and 99Tc were determined with a liquid scintillation analyzer. The breakthrough curves of 3H and 99Tc indicate that 99Tc migrates a little faster than that 3H does in the aquifer.

Restricted access

A rapid and sensitive ultraperformance liquid chromatography-multiple reaction monitoring-multi-stage/mass spectrometry (UPLC-MRM-MS/MS) method has been developed for simultaneous quantification of salvianolic acid B and tanshinone IIA of salvia tropolone tablets in dog plasma. This was achieved by performing quantification using the MRM acquisition with two channels of MRM-MS/MS and MS full scan for more accuracy qualitative results, and the fragmentation transitions of m/z 295→249, 191 for tanshinone IIA and m/z 297→279, 251 for IS in positive mode, m/z 717→519, 321 for salvianolic acid B and m/z 295→267, 239 for IS in negative mode were selected. The UPLC separation was achieved within 3 min in a single UPLC run. Linear calibration curves were obtained over the concentration range of 10 pg/mL−1 ng/mL for tanshinone IIA and 100 pg/mL−1 for salvianolic acid B. Lower limit of quantitation (LLOQ) was 10 pg/mL and 100 pg/mL for tanshinone IIA and salvianolic acid B, respectively. The inter-day and intra-day precision (relative standard deviation, RSD) in all samples were less than 8.21%, and the recoveries were over 85.9% for both tanshinone IIA and salvianolic acid B. The two channels of MRM with MS full scan approach could provide both qualitative and quantitative results without the need for repetitive analyses and resulted in the reduction of further confirmation experiments and analytical time. The pharmacokinetic study of the two active components of salvia tropolone tablets following oral gavage administration of dogs was thus explored with this method.

Open access
Journal of Thermal Analysis and Calorimetry
Authors:
X.-C. Lv
,
Z.-C. Tan
,
Z.-A. Li
,
Y.-S. Li
,
J. Xing
,
Q. Shi
, and
L.-X. Sun

Abstract  

The (R)-BINOL-menthyl dicarbonates, one of the most important compounds in catalytic asymmetric synthesis, was synthesized by a convenient method. The molar heat capacities C p,m of the compound were measured over the temperature range from 80 to 378 K with a small sample automated adiabatic calorimeter. Thermodynamic functions [H TH 298.15] and [S TS 298.15] were derived in the above temperature range with a temperature interval of 5 K. The thermal stability of the substance was investigated by differential scanning calorimeter (DSC) and a thermogravimetric (TG) technique.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors:
Y. Y. Di
,
Z. C. Tan
,
L. W. Li
,
S. L. Gao
, and
L. X. Sun

Abstract

Low-temperature heat capacities of a solid complex Zn(Val)SO4·H2O(s) were measured by a precision automated adiabatic calorimeter over the temperature range between 78 and 373 K. The initial dehydration temperature of the coordination compound was determined to be, T D=327.05 K, by analysis of the heat-capacity curve. The experimental values of molar heat capacities were fitted to a polynomial equation of heat capacities (C p,m) with the reduced temperatures (x), [x=f (T)], by least square method. The polynomial fitted values of the molar heat capacities and fundamental thermodynamic functions of the complex relative to the standard reference temperature 298.15 K were given with the interval of 5 K.

Enthalpies of dissolution of the [ZnSO4·7H2O(s)+Val(s)] (Δsol H m,l 0) and the Zn(Val)SO4·H2O(s) (Δsol H m,2 0) in 100.00 mL of 2 mol dm−3 HCl(aq) at T=298.15 K were determined to be, Δsol H m,l 0=(94.588±0.025) kJ mol−1 and Δsol H m,2 0=–(46.118±0.055) kJ mol−1, by means of a homemade isoperibol solution–reaction calorimeter. The standard molar enthalpy of formation of the compound was determined as: Δf H m 0 (Zn(Val)SO4·H2O(s), 298.15 K)=–(1850.97±1.92) kJ mol−1, from the enthalpies of dissolution and other auxiliary thermodynamic data through a Hess thermochemical cycle. Furthermore, the reliability of the Hess thermochemical cycle was verified by comparing UV/Vis spectra and the refractive indexes of solution A (from dissolution of the [ZnSO4·7H2O(s)+Val(s)] mixture in 2 mol dm−3 hydrochloric acid) and solution A’ (from dissolution of the complex Zn(Val)SO4·H2O(s) in 2 mol dm−3 hydrochloric acid).

Restricted access

Abstract  

A novel double -diketone 1,6-bis(1-phenyl-3-methyl-5-oxo-pyrazol-4-yl) hexanedione-[1,6] (BPMOPH) was further studied on its coordination compounds with uranium and thorium, respectively. The IR, UV, and1H-NMR spectra were examined, and the proposed structure is discussed.

Restricted access