Search Results
You are looking at 31 - 40 of 67 items for
- Author or Editor: S. Yang x
- Refine by Access: All Content x
Naturalization is the introduction and establishment of a nonnative species with sustainable populations in a novel environment. The success of nonnative species may be influenced by their relatedness to the native flora. Darwin proposed that if a nonnative plant species is introduced into an environment without native congeners, the nonnative species will have a greater chance of becoming naturalized. To test Darwin’s naturalization hypothesis, we compiled a Kentucky plant database consisting of 821 vascular plant species and subsequently selected species traits and distribution information to determine the effect of congeneric species and traits on the probability of successful naturalization and invasion. The predictors used include reproductive traits, growth form, abundance, habitat type, native congeners, and biogeographical origin. We fit three sets of generalized linear mixed models (GLMMs) with a binomial family and a logit link. Backward selection based on minimizing the Akaike Information Criterion (AIC) was used in the analyses. Our results from these three sets of models clearly indicate that the validity of Darwin’s hypothesis is invasion stage dependent. More specific, the naturalized and invasive models (predicting the probability of being naturalized and invasive respectively) did not support Darwin’s naturalization hypothesis. The number of native congeners had no effect on the likelihood that a particular species would naturalize and become invasive. Our results suggest that Darwin’s naturalization hypothesis is more relevant during the early stage of establishment as demonstrated by the native model (predicting the probability of being native) and it becomes irrelevant during the late stages of invasion as indicated by the naturalized and invasive models. Thus, it can be generalized that biotic interactions, especially competition, is a critical determinant of initial success for nonnative species in the recipient communities. Once established, the fate of non-native species during the late stages of invasion may be more related to other factors such as biogeographic origin and habitat conditions. Furthermore, we found reproductive traits such as flowering phenology and flower type are associated with invasion success. We also recognized contrasting traits between native and nonnative species, indicating niche differentiation between these two groups of species. Niche overlapping was found as well among species regardless of the status of being native or otherwise. Our study provides a novel approach to advance the understanding of phylogenetic relatedness between nonnative species and native flora by integrating traits and niche concepts at the regional scale.
Abstract
The neutron-rich target-like isotope 236Th has been produced in the 238U-2p multinucleon transfer reaction between a 60 MeV/u 18O beam and natural 238U targets. The activities of thorium were determined after radiochemical separation of Th from the mixture of uranium and reaction products. The 236Th isotope was identified by the characteristic γ-rays of 642.2, 687.6 and 229.6 keV. The production cross section of 236Th was determined to be 250±50 μb.
Summary
In the TG analysis of the bio-composites, their thermal stability was found to slightly decrease and the ash content to increase as the lignocellulosic filler loading increased. This is a logical consequence of the lower thermal stability of the lignocellulosic filler compared to that of the matrix polymer. The dispersion and interfacial adhesion between the lignocellulosic filler and thermoplastic polymer were important factors affecting the thermal stability of the composite system. In order to improve their compatibility and interfacial adhesion, the incorporation of a compatibilizing agent into the lignocellulosic material-thermoplastic polymer composites is recommended. In the TMA analysis, the thermal expansion of the composites was found to decrease with increasing filler loading and incorporating compatibilizing agent. Lignocellulosic filler is a suitable material for preventing the thermal expansion of the composite materials caused by atmospheric changes.
Abstract
The thermal degradation and thermal stability of rice husk flour (RHF) filled polypropylene (PP) and high-density polyethylene (HDPE) composites in a nitrogen atmosphere were studied using thermogravimetric analysis. The thermal stability of pure PP and HDPE was found to be higher than that of wood flour (WF) and RHF. As the content of RHF increased, the thermal stability of the composites decreased and the ash content increased. The activation energy of the RHF filled PP composites increased slowly in the initial stage until α=0.3 (30% of thermal degradation region) and thereafter remained almost constant, whereas that of the RHF filled HDPE composites decreased at between 30 and 40 mass% of RHF content. The activation energy of the composites was found to depend on the dispersion and interfacial adhesion of RHF in the PP and HDPE matrix polymers.
Abstract
Most elemental concentrations in crops should be related to those in soil and other circumferential environments. In the present study, more than thirty minor and trace elements in soils and crops were determined by the use of ICP, XRF and NAA. Soil and crop samples were collected at eleven abandoned mine regions in Chungnam province located in the middle part of Korea. The elemental concentrations in soils were compared to the crustal mean concentrations in both Chungnam area and worldwide. The concentration ratios of the elements in soils and crop compartments were calculated and the distribution characteristics of each element were investigated between soil and crop compartments.
Abstract
The crystal C81H78N12O6Cd3 was synthesized and its structure was determined by single crystal X-ray diffraction method. The complex crystallizes in the monoclinic system space group P21/n with cell parameters, a=15.959(4) , b=26.222(3) , c=25.907(6) , β=101.60(2). The non-isothermal kinetics of the crystal was studied by use of non-isothermal TG and DTG curves. The kinetic parameters were analyzed by means of integral and differential methods, and mechanism functions of the thermal decomposition reaction for its second step were proposed. The kinetic equation of thermal decomposition is expressed as: dα/dt=Aexp(-E/RT)1.5(1-α)4/3[1/(1-α)1/3-1]−1. The average values of E(kJ mol−1) and lnA/s−1 are 339.25, 43.95, respectively.
Abstract
3H and 14C Measurements of the dry active waste (DAW), such as the cotton, paper, and vinyl, generated from a nuclear power plant (NPP) were conducted with wet oxidation using open vessel equipment based on simulation results. The recovery efficiency with the simulated samples was around 93% with a relative standard deviation (RSD) of 1–3%. A liquid scintillation counter (LSC) was used for counting and adjusted to a quenching correction curve. The counting value was evaluated for the minimum detectable activity (MDA), which was found to be about 4 × 10−1 Bq/g for 3H and 2 × 10−2 for 14C when approximately 5 g of the samples were measured. The measured DAW samples for the cotton, paper, and vinyl generated from NPP achieved of RSD values of 25, 25, and 60%, respectively, for 3H and 0–50% for 14C.
We described the structure of two different morphological gall types, subglobular and fusiform in Ephedra distachya. The gall midge, Xerephedromyia ustjurtensis Fedotova (Diptera: Cecidomyiidae) induces both types of gall formation. Galls are persistent resinous stem swellings usually subglobular and rarely fusiform in shape. Mature galls are solid, hard, indehiscent woody structure with many circular exit holes on their surface. Galls are anatomically similar, but different from the unaffected stems. The mean number of larval cavities varied significantly between subglobular and fusiform galls, while variation of diameter of the larval cavities was not significant between the gall morphotypes. We documented significant (p < 0.05) variation in total gall densities between sexes of Ephedra distachya, where male plants (mean = 0.89 ± 0.15) supporting higher gall densities than females (mean = 0.36±0.04). Total gall densities varied significantly (p < 0.05) among three sample populations of E. distachya and exhibited an increasing trend from mesic to xeric sites along an altitudinal gradient. Gall size also varied between plant sexes and among sites.
Global rice supplies have been found contaminated with unapproved varieties of genetically modified (GM) rice in recent years, which has led to product recalls in several of countries. Faster and more effective detection of GM contamination can prevent adulterated food, feed and seed from being consumed and grown, minimize the potential environmental, health or economic damage. In this study, a simple, reliable and cost-effective multiplex polymerase chain reaction (PCR) assay for identifying genetic modifications of TT51-1, Kemingdao1 (KMD1) and Kefeng6 (KF6) rice was developed by using the event-specific fragment. The limit of detection (LOD) for each event in the multiplex PCR is approximately 0.1%. Developed multiplex PCR assays can provide a rapid and simultaneous detection of GM rice.
Starch is a product of photosynthetic activities in leaves. Wheat yields largely depend on photosynthetic carbon fixation and carbohydrate metabolism in flag leaves. The mapping of quantitative trait loci (QTLs) associated with flag leaf starch content (FLSC) in wheat (Triticum aestivum L.) was completed using unconditional and conditional QTL analyses. The FLSC of this population during the early grain-filling stage was measured at six stages in six environments. Combining unconditional and conditional QTL mapping methods, eight unconditional QTLs and nine conditional QTLs were detected, with five QTLs identified as unconditional and conditional QTLs. Four unconditional QTLs (i.e. qFLS-1B, qFLS-1D-1, qFLS-4A, and qFLS-7D-1) and one conditional QTL (i.e. qFLS-3A-1) were identified in two of six environments. Two QTLs (qFLS-1D-2 and qFLS-7D-1), which significantly affected the FLSC, were identified using the unconditional QTL mapping method, while three QTLs (i.e. qFLS-1A, qFLS-3A-1, and qFLS-7D-1) were detected using the conditional QTL mapping method. Our findings provide new insights into the genetic mechanism and regulatory network underlying the diurnal FLSC in wheat.