Search Results

You are looking at 31 - 40 of 64 items for

  • Author or Editor: X. Yang x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

This study aimed to explore the inhibitory effect and mechanism of the total alkaloids of Dendrobium officinale Kimura et Migo (DENA) against cholesterol esterase (CE). DENA was characterised by SEM, 1H NMR, and X-ray diffraction (XRD). The inhibitory effect and mechanism of DENA against CE were investigated through fluorescence chromatography, circular dichroism, and molecular docking. DENA inhibited CE activity (IC50 = 1.08 ± 0.09 mg mL−1), characterised by a non-competitive inhibition mechanism. Furthermore, DENA induced a fluorescence quenching in CE, causing a blue shift in the λmax. This coincided with a transition in the secondary structure of CE from a layered to a helical structure by circular dichroism, indicating a significant reduction in its stability. Moreover, molecular docking confirmed that DENA binds to amino acid residues in the enzyme through hydrogen bonds and hydrophobic interactions, leading to structural changes and reduced enzyme activity. These results suggest DENA has the potential to lower blood lipid levels by inhibiting CE activity.

Restricted access

Abstract  

A series of PA-TD mixtures were prepared and their thermal properties were studied by DSC and thermal conductivity measurement. The phase diagram of the binary system was constructed, which showed an eutectic behavior for the solid-liquid equilibrium line. The eutectic composition of the binary system was at the mass fraction of TD near 0.7 with an eutectic temperature of about 29°C. At TD side, PA was partially miscible in the TD solid matrix and the solid phase transition of TD had an effect on the solidus line. The eutectic composition mixture could be viewed as a new phase change material with large thermal energy storage capacity.

Restricted access

Abstract  

The effects of multi-walled carbon nanotubes (MWNTs) on the phase change enthalpy (ΔH) and the thermal conductivity (κ) of a solid-liquid phase change materials (PCM), palmitic acid (PA), have been investigated. The results showed that both the ΔH and the κ of the composite were lower than that of PA when the loading of MWNTs was small. As the concentration of MWNTs in the composites increased, the ΔH of the composites was slightly improved and then decreased linearly. However, the κ of the composites was monotonously increased from the minimum value. When the loading of MWNTs increased to 5% and no surfactant was added, the κ of the composite was enhanced to be 26% higher than that of PA. The κ of the composite could be enhanced by CTAB instead of SDBS when the loading of MWNTs was small, as SDBS showed no obvious effect on the κ of the composites. Furthermore, the effects of surface modification of MWNTs on the ΔH and the κ of the composites have also been investigated.

Restricted access

Abstract  

Two compounds of antimony trichloride and bismuth trichloride with valine are synthesized by solid phase synthesis at room temperature. Their compositions, determined by element analysis, are Sb(C5H10O2N)3·2H2O and Bi(C5H10O2N)2Cl·0.5H2O. The crystal structure of antimony complex with valine belongs to triclinic system and its lattice parameters are: a=0.9599 nm, b=1.5068 nm, c=1.9851 nm, α=92.270, β=95.050, γ=104.270. The crystal structure of bismuth complex with valine belongs to monoclinic system and its lattice parameters are: a=1.6012 nm, b=1.8941 nm, c=1.839 nm, β=99.73°. The far-infrared spectra and infrared spectra show that the amino group and carboxyl of valine may be coordinated to antimony and bismuth, respectively, in two compounds. The TG-DSC results also reveal that the complexes were formed.

Restricted access

Abstract  

A new model has been deduced by assumed autocatalytic reactions. It includes two rate constants, k 1 and k 2, two reaction orders, m and n, and the initial concentration of [OH]. The model proposed has been applied to the curing reaction of a system of bisphenol-S epoxy resin (BPSER), with4,4'-diaminodiphenylmethane (DDM) as a curing agent. The curing reactions were studied by means of differential scanning calorimetry (DSC). Analysis of DSC data indicated that an autocatalytic behavior showed in the curing reaction. The new model was found to fit to the experimental data exactly. Rate constants, k 1 and k 2 were observed to be greater when curing temperature increased. The activation energies for k 1 and k 2 were 95.28 and 39.69 kJ mol–1, respectively. Diffusion control was incorporated to describe the cure in the latter stages.

Restricted access

Abstract  

The effects of cisplatin and its trans isomer transplatin on the thermal denaturation of G-actin were studied with a Micro DSC-III differential scanning calorimeter. The denaturation enthalpy of G-actin was found to be 12 J g–1, and the denaturation temperature was 328 K. The thermal denaturation curve showed that increasing cisplatin concentration decreased the enthalpy change. However, after the ratio of cisplatin to G-actin attained 8:1 (mol:mol), the denaturation enthalpy no longer decreased. Transplatin decreased the enthalpy change more rapidly. In contrast with cisplatin, the denaturation peak at 328 K disappeared, and a strong exothermic peak appeared at 341 K when the ratio of transplatin to G-actin was 8:1 (mol:mol). The enthalpy change was 75 J g–1, which is far in excess of the range of weak interactions. This strong exothermic phenomenon probably reflects the agglutination of protein. The effects of cisplatin and transplatin on the number of the free thiol groups of G-actin are discussed.

Restricted access

Abstract

The objective of this study was to examine the possible formation of chlorinated organic compounds during the combustion of blends of refuse derived fuels (RDF) and coal under conditions similar to those of an atmospheric fluidized bed combustion (AFBC) system. A series of experiments were conducted using a TG interfaced to FTIR. Additional experiments using a tube furnace preheated to AFBC operating temperatures were also conducted. The combustion products were cryogenically trapped and analyzed with a GC/MS system. The chlorination of phenols and the condensation reactions of chlorophenols were investigated in this study. A possible mechanism for the formation of chlorinated organic compounds such as dibenzodioxins and dibenzofurans, by chlorination and condensation reactions involving phenols, was proposed.

Restricted access

Abstract  

After an acute exposure to lanthanum chloride, the pharmacokinetics of calcium uptake in rats was studied by radioactive 47Ca tracer. The accumulated doses of calcium in the left femurs during 24 hours were determined. The results showed that the area under the curves (AUC), specific activity of maximal blood 47Ca concentration (C max ), distribution rate constant (K a ) and the accumulated dose of calcium in the left femur decreased while time to C max (T peak ) increased with the rising dosage of lanthanum exposure. It indicated that lanthanum expose had a negative effect on calcium absorption.

Restricted access

Abstract  

The neutron-rich target-like isotope 236Th has been produced in the 238U-2p multinucleon transfer reaction between a 60 MeV/u 18O beam and natural 238U targets. The activities of thorium were determined after radiochemical separation of Th from the mixture of uranium and reaction products. The 236Th isotope was identified by the characteristic γ-rays of 642.2, 687.6 and 229.6 keV. The production cross section of 236Th was determined to be 250±50 μb.

Restricted access

Abstract  

Solvent extraction of protactinium with tri-iso-octyl-amine (TIOA) in xylene, benzene, carbon tetrachloride and chloroform from HCl, HF, HNO3, HClO4 and H2SO4 media was studied using 233Pa as a radiotracer. The extraction efficiencies of protactinium were determined as a function of shaking time, concentrations of mineral acids in aqueous phase, extractant concentrations and diluents in organic phase. The extraction mechanism was discussed. The results show that the extracted species in the organic phase is [(R3NH)nPa(OH)xCl y 5−xy ].

Restricted access