Search Results
You are looking at 41 - 50 of 55 items for
- Author or Editor: H. Sun x
- Refine by Access: All Content x
Abstract
The characterization of different sized TiO2 (25 nm, 80 nm, and 155 nm) was carried out by transmission electron microscopy (TEM) and the micro-distributions of TiO2 in the olfactory bulb of mice after nasal inhalation were investigated by microbeam SRXRF mapping techniques. The results show that TiO2 particles can be translocated to the olfactory bulb through the olfactory nerve system after inhalation. The distributions of Fe, Cu, and Zn in the olfactory bulb were also studied.
Senescence in a wheat (Triticum aestivum L.) leaf is a programmed degeneration process leading to death. During this process, green leaf area duration (GLAD) and green leaf number of main stem (GLNMS) are gradually reduced. In this study, the two traits of Hanxuan10/Lumai14 DH population at different development stages after anthesis were evaluated under rainfed and irrigated conditions, and QTLs were detected. GLAD and GLNMS of two parents and DH population under rainfed condition were less than those under irrigated condition, and close correlations (P < 0 05) were found between GLAD and GLNMS after 25 DAA under both water conditions. GLAD and GLNMS were co-controlled by major and minor genes. QTLs for GLAD were stably expressed at different development stages after anthesis under both water conditions, such as QGlad22-1B-1, QGlad25-1B-1, QGlad28-1B-2 detected under irrigated condition and QGlad25-1B-3, QGlad28-1B-4 mapped under rainfed condition were located at a 20.7 cM marker interval of Xgwm273-EST122 on 1B chromosome. But QTLs for GLNMS were inducibly and specifically expressed at specific developmental stages after anthesis under both water conditions. The findings provide dynamic genetic information related to wheat senescence.
Abstract
The power vs. time curves of the promoter bacteria of a nutrient drug were determined by using a 2277 Thermal Activity Monitor (Sweden). A new experimental model of bacterial growth were established. The growth rate constant, heat output and optimum concentration of specific promoter bacterial of nutrient drug were calculated.
Abstract
To develop thermal stable flavor, two glycosidic bound flavor precursors, geranyl-tetraacetyl-β-D-glucopyranoside (GLY-A) and geranyl-β-D-glucopyranoside (GLY-B) were synthesized by the modified Koenigs–Knorr reaction. The thermal decomposition process and pyrolysis products of the two glycosides were extensively investigated by thermogravimetry (TG), differential scanning calorimeter (DSC) and on-line pyrolysis-gas chromatography mass spectroscopy (Py-GC-MS). TG showed the T p of GLY-A and GLY-B were 254.6 and 275.7°C. The T peak of GLY-A and GLY-B measured by DSC were 254.8 and 262.1°C respectively.
Py-GC-MS was used for the simply qualitative analysis of the pyrolysis products at 300 and 400°C. The results indicated that: 1) A large amount of geraniol and few by-products were produced at 300°C, the by-products were significantly increased at 400°C; 2) The characteristic pyrolysis product was geraniol; 3) The primary decomposition reaction was the cleavage of O-glycosidic bound of the two glycosides flavor precursors. The study on the thermal behavior and pyrolysis products of the two glycosides showed that this kind of flavor precursors could be used for providing the foodstuff with specific flavor during heating process.
Abstract
In this paper, organic phase change materials (PCM)/Ag nanoparticles composite materials were prepared and characterized for the first time. The effect of Ag nanoparticles on the thermal conductivity of PCM was investigated. 1-tetradecanol (TD) was selected as a PCM. A series of nano-Ag-TD composite materials in aqueous solution were in-situ synthesized and characterized by means of thermal conductivity evaluation method, TG-DSC, IR, XRD and TEM. The results showed that the thermal conductivity of the composite material was enhanced as the loading of Ag nanoparticles increased. The composite materials still had relatively large phase change enthalpy. Their phase change enthalpy could be correlated linearly with the loading of TD, but their phase change temperature was a little bite lower than that of pure TD. The thermal stability of the composite materials was close to that of pure TD. It appeared that there was no strong interaction between the Ag nanoparticles and the TD. Furthermore, the experiment results indicated that the Ag nanoparticles dispersed uniformly in the materials, occurred in the forms of pure metal.
Abstract
Heat capacities of the carbon nanotubes (CNTs) with different sizes have been measured by modulated temperature differential scanning calorimetry (MDSC) and reported for the first time. The results indicated the values of C p increased with shortening length of CNTs when the diameters of CNTs were between 60 and 100 nm. However, the values of C p of CNTs were not affected by their diameter when the lengths of CNTs were 1–2 um, or not affected by the length of CNTs when their diameters were below 10 nm. The thermal stabilities of the CNTs have been studied by TG-DTG-DSC. The results of TG-DTG showed that thermal stabilities of CNTs were enhanced with their diameters increase. With lengths increase, the thermal stabilities of CNTs increased when their diameters were between 60 and 100 nm, but there is a slight decrease when their diameters were less than 60 nm. The further DSC analyses showed both released heat and T onset increased with the increase of CNTs diameters, which confirms the consistency of the results from both TG-DTG and DSC on CNTs thermal stability.
Thermodynamic investigation of room temperature ionic liquid
The heat capacity and thermodynamic functions of BMIPF6
Abstract
The molar heat capacities of the room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluoroborate (BMIPF6) were measured by an adiabatic calorimeter in temperature range from 80 to 390 K. The dependence of the molar heat capacity on temperature is given as a function of the reduced temperature (X) by polynomial equations, C P,m (J K−1 mol−1) = 204.75 + 81.421X − 23.828 X 2 + 12.044X 3 + 2.5442X 4 [X = (T − 132.5)/52.5] for the solid phase (80–185 K), C P,m (J K−1 mol−1) = 368.99 + 2.4199X + 1.0027X 2 + 0.43395X 3 [X = (T − 230)/35] for the glass state (195 − 265 K), and C P,m (J K−1 mol−1) = 415.01 + 21.992X − 0.24656X 2 + 0.57770X 3 [X = (T − 337.5)/52.5] for the liquid phase (285–390 K), respectively. According to the polynomial equations and thermodynamic relationship, the values of thermodynamic function of the BMIPF6 relative to 298.15 K were calculated in temperature range from 80 to 390 K with an interval of 5 K. The glass transition of BMIPF6 was measured to be 190.41 K, the enthalpy and entropy of the glass transition were determined to be ΔH g = 2.853 kJ mol−1 and ΔS g = 14.98 J K−1 mol−1, respectively. The results showed that the milting point of the BMIPF6 is 281.83 K, the enthalpy and entropy of phase transition were calculated to be ΔH m = 20.67 kJ mol−1 and ΔS m = 73.34 J K−1 mol−1.
It is well demonstrated that wheat-rye 1BL/1RS translocated chromosome leads to some valuable novel traits such as disease resistance, high yield and functional stay-green after anthesis. To understand the physiological mechanism of 1BL/1RS translocation responsible for osmotic stress, two wheat cultivars, CN12 and CN17, carrying the translocated chromosome and MY11 without the translocated chromosome were employed in the study. During 5-day osmotic stress, fresh weight inhibition, chlorophyll content, soluble protein content, MDA concentration, antioxidant enzymes activity and free polyamines content were examined. CN12 and CN17, especially cultivar CN17, registered greater biomass and minor oxidative damage compared with their wheat parent. Meanwhile, the concentration of Spd and Spm in CN17 was significantly higher than the others. In addition, we found a positive correlation of fresh weight inhibition (FWI) and Put concentration, and a negative one with the parameters (Spd + Spm): Put ratio, indicating the importance of higher polyamine (Spd and Spm) accumulation on the adaptation to osmotic stress. Therefore, we proposed that the accumulation of higher polyamines (Spd and Spm) should play an important role on the adaptation of 1BL/1RS translocation lines to osmotic stress and might be important factors for the origin of novel traits introduced by 1BL/1RS.
Abstract
There have been contradicting observations regarding the prebiotic efficacy of feruloylated oligosaccharides (FOs) extracted from different varieties of cereals with varying oligosaccharides and ferulic acid (FA) levels. The present study was performed to determine whether the mass ratio of xylooligosaccharide (XOS) to FA influences their combined effects on faecal FA content, short chain fatty acid (SCFA) output, and gut stress of d-galactose-treated aging rats. The results show that there was no significant difference in the faecal FA levels of rats fed with 5:1 and 10:1 XOS:FA diet, although the FA level in the 5:1-supplemented diet was twice as much as in the 10:1 diet. More utilisation of FA decreased butyric acid and SCFA output in the faeces for diet 5:1 compared with diets 10:1 XOS:FA or XOS alone. Furthermore, compared with 10:1 XOS:FA or XOS alone treatments, the 5:1 XOS:FA diet resulted in increased 1-diphenyl-2-picrylhydrazyl activity and higher ratios of Bifidobacterium or Lactobacillus to Escherichia coli (P < 0.05), while not increasing the number of probiotic Bifidobacterium and Lactobacillus. These findings suggest that under the specific stress level set for this study, the sufficient amount of FA added to XOS (5:1) can stimulate FA utilisation to modify gut redox balance, while reducing faecal SCFA output.
Influence of different maturity stages and treatments of ethephon, exogenous ABA, and fluridone on the ripening and hormone level of ‘Zhonghuashoutao’ peach during development and post-harvest storage were investigated. The accumulation of endogenous ABA appeared at the onset of ripening and peaked at two weeks before harvest. Fruit firmness decreased, while ethylene release and SSC/TA increased sharply after a maximum peak of ABA, which have triggered the initiation of the fruit ripening. The fruits, harvested at 170 d when fruits have ripened and stored at 20 °C, showed an ethylene climacteric peak, and the pulp started softening normally, and the SSC/TA value increased. Compared with them, the immature green fruits harvested at other dates, could not mature normally due to the lack of normal reciprocity between ABA and ethylene. The ethylene release was promoted by the treatment of exogenous ABA and ethephon during ripening until the endogenous ABA reached a maximum value. However, fluridone treatment showed an inhibitory effect. The above-mentioned changes occurred again in the peach fruits after harvest. The results indicated that both ABA and ethylene play important roles in peach ripening, and their action depended on the ripening stage of peach.