Search Results

You are looking at 41 - 50 of 112 items for

  • Author or Editor: S. Li x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The free-radical bulk polymerization of 2,2-dinitro-1-butyl-acrylate (DNBA) in the presence of 2,2′-azobisisobutyronitrile (AIBN) as the initiator was investigated by DSC in the non-isothermal mode. Kissinger and Ozawa methods were applied to determine the activation energy (E a) and the reaction order of free-radical polymerization. The results showed that the temperature of exothermic polymerization peaks increased with increasing the heating rate. The reaction order of non-isothermal polymerization of DNBA in the presence of AIBN is approximately 1. The average activation energy (92.91±1.88 kJ mol −1) obtained was smaller slightly than the value of E a=96.82 kJ mol−1 found with the Barrett method.

Restricted access

Abstract  

The concentration of radon in an underground research facility (URF) was measured by setting up 12 sampling points in the URF and with 3 different measurement methods. All the methods were calibrated in the radon laboratory of the No. 6 Institute of Nuclear Industry. The accumulation of radon in the URF was observed before a ventilation system was applied. The reduction of radon concentration in the URF by 1-hour ventilation was also observed. Experimental result indicates that the concentration of radon in the URF increased from 15 to 50 Bq·m−3 in 5 days without ventilation, and decreased to less than 10 Bq·m−3 with 1-hour ventilation. Applying the average working time of 4 hours per day of the workers in the URF, the additional effective dose is 0.75 msv·y−1 when 1 hour ventilation is applied before entering the URF and 13 mSv·y−1 without ventilation. These figures strongly suggest that for the health of the workers, ventilation in such underground research facilities is needed.

Restricted access

A rapid and sensitive ultraperformance liquid chromatography-multiple reaction monitoring-multi-stage/mass spectrometry (UPLC-MRM-MS/MS) method has been developed for simultaneous quantification of salvianolic acid B and tanshinone IIA of salvia tropolone tablets in dog plasma. This was achieved by performing quantification using the MRM acquisition with two channels of MRM-MS/MS and MS full scan for more accuracy qualitative results, and the fragmentation transitions of m/z 295→249, 191 for tanshinone IIA and m/z 297→279, 251 for IS in positive mode, m/z 717→519, 321 for salvianolic acid B and m/z 295→267, 239 for IS in negative mode were selected. The UPLC separation was achieved within 3 min in a single UPLC run. Linear calibration curves were obtained over the concentration range of 10 pg/mL−1 ng/mL for tanshinone IIA and 100 pg/mL−1 for salvianolic acid B. Lower limit of quantitation (LLOQ) was 10 pg/mL and 100 pg/mL for tanshinone IIA and salvianolic acid B, respectively. The inter-day and intra-day precision (relative standard deviation, RSD) in all samples were less than 8.21%, and the recoveries were over 85.9% for both tanshinone IIA and salvianolic acid B. The two channels of MRM with MS full scan approach could provide both qualitative and quantitative results without the need for repetitive analyses and resulted in the reduction of further confirmation experiments and analytical time. The pharmacokinetic study of the two active components of salvia tropolone tablets following oral gavage administration of dogs was thus explored with this method.

Open access
Restricted access

Abstract  

The migration of 99Tc in unsaturated Chinese loess was investigated in-situ with a tracer method. Quartz containing 3H (HTO) and 99Tc (99TcO4 -) was introduced into the bottom of an experimental pit which was then backfilled at the field test site. Then core soil samples were taken and cut vertically into 1 cm long slices. The slice samples were analyzed by liquid scintillation techniques in the laboratory. The results indicate that the migration pattern of 99Tc was quite similar to that of 3H and the vertical diffusion coefficients of 99Tc and 3H were calculated as (4.7±0.4).10-2 cm2/d and (7.8±0.4).10-2 cm2/d, respectively.

Restricted access

Two new y-type HMW-GSs in Ae. tauschii , 1Dy12.1* t and 1Dy12.2 t with the mobility order of 1Dy12.2 t > 1Dy12.1* t > 1Dy12.1 t >1Dy12, were identified by both SDS-PAGE and MALDI-TOF-MS. Molecular cloning and sequencing showed that the genes encoding subunits 1Dy12.1* t and 1Dy12.2 t had identical nucleotide acid sequences with 1,947 bp encoding a mature protein of 627 residues. Their deduced molecular weights were 67,347.6 Da, satisfactorily corresponding to that of 1Dy12.2 t subunit determined by MALDI-TOF-MS (67,015.7 Da), but was significantly smaller than that of the the 1Dy12.1* t subunit (68,577.1 Da). Both subunits showed high similarities to 1Dy10, suggesting that they could have a positive effect on bread-making quality. Interestingly, the expressed protein of the cloned ORF from accessions TD87 and TD130 in E. coli co-migrated with subunit 1Dy12.2 t , but moved slightly faster than 1Dy12.1* t on SDS-PAGE. The expressed protein in transgenic tobacco seeds, however, had the same mobility as the 1Dy12.1* t subunit, as confirmed by both SDS-PAGE and Western blotting. Although direct evidence of phosphoprotein could not be obtained by specific staining method, certain types of post-translational modifications (PTMs) of the 1Dy12.1* t subunit could not be excluded. We believe PTMs might be responsible for the molecular weight difference between the subunits 1Dy12.1* t and 1Dy12.2 t .

Restricted access

Abstract  

The catalytic and accelerating effects of three coal-burning additives (CBA) on the burning of graphite were studied with the help of thermogravimetric (TG) analysis. The kinetic study on the catalytic oxidation of the graphite doped with CBA was carried out and the results were presented. The results show that the CBA can change the carbon oxidation/combustion course by catalytic action and change the activation energy, thus improving the combustion efficiency.

Restricted access

Abstract  

The crystal C81H78N12O6Cd3 was synthesized and its structure was determined by single crystal X-ray diffraction method. The complex crystallizes in the monoclinic system space group P21/n with cell parameters, a=15.959(4) , b=26.222(3) , c=25.907(6) , β=101.60(2). The non-isothermal kinetics of the crystal was studied by use of non-isothermal TG and DTG curves. The kinetic parameters were analyzed by means of integral and differential methods, and mechanism functions of the thermal decomposition reaction for its second step were proposed. The kinetic equation of thermal decomposition is expressed as: dα/dt=Aexp(-E/RT)1.5(1-α)4/3[1/(1-α)1/3-1]−1. The average values of E(kJ mol−1) and lnA/s−1 are 339.25, 43.95, respectively.

Restricted access

We described the structure of two different morphological gall types, subglobular and fusiform in Ephedra distachya. The gall midge, Xerephedromyia ustjurtensis Fedotova (Diptera: Cecidomyiidae) induces both types of gall formation. Galls are persistent resinous stem swellings usually subglobular and rarely fusiform in shape. Mature galls are solid, hard, indehiscent woody structure with many circular exit holes on their surface. Galls are anatomically similar, but different from the unaffected stems. The mean number of larval cavities varied significantly between subglobular and fusiform galls, while variation of diameter of the larval cavities was not significant between the gall morphotypes. We documented significant (p < 0.05) variation in total gall densities between sexes of Ephedra distachya, where male plants (mean = 0.89 ± 0.15) supporting higher gall densities than females (mean = 0.36±0.04). Total gall densities varied significantly (p < 0.05) among three sample populations of E. distachya and exhibited an increasing trend from mesic to xeric sites along an altitudinal gradient. Gall size also varied between plant sexes and among sites.

Restricted access

Abstract  

The present paper based on experimental results contains discussions and suggestions on the possible use of fine-powder Al2O3 and SiO2 with their original content of microimpurities of up to 40 elements, as multielement standards for neutron activation analysis. For example, activation analysis of As, Au, Ba, Cr, Cs, Fe, Ga, K, Ni, Sb, Sc, Se, Sr, Ta, Th, Ti, U, W, Zn, Zr and the REE La, Ce, Nd, Sm, Eu, Tb, Tm, Yb contained in SiO2 powder off MERCK reagents showed their concentrations to be 0.1 to 5% of those in IAEA standard SL-1. In Al2O3 this level is even lower, approximately 10 times and more for the majority of the above-mentioned elements. As Al2O3 and SiO2 are good sorbents for the majority of elements, additional introduction of some elements may allow more methods of analysis. The homogeneity of Al2O3 and SiO2 samples both in the original state and after introduction of some elements was determined by neutron activation analysis, and the SD did not exceed 1% for an Al2O3 sample weight of 0.1 g, and 2% for SiO2.

Restricted access