Search Results

You are looking at 41 - 50 of 55 items for :

  • Author or Editor: X. Chen x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The thermal decomposition of Zn[NFA]2 5H2O (NFA=C16H18FN3O3, norfloxacin) and its kinetics were studied under non-isothermal conditions in air by TG-DTG and DTA methods. The intermediate and residue for each decomposition were identified from the TG curve. The non-isothermal kinetic data were analyzed by means of the Achar method and the Madhusudanan-Krishnan-Ninan (MKN) method. The possible reaction mechanisms were investigated by comparing the kinetic parameters. The kinetic equation for the second stage can be expressed as d/dt=Aexp(–E/RT)(1–).

Restricted access

Abstract  

The power-time curves of Tetrahymena thermophila exposed to tributyltin (TBT) were detected by microcalorimetry. Metabolic rate (r) decreased significantly while peak time (PT) increased with the enhancement of TBT level. Compared with the measured multibiomarker including catalase, lactate dehydrogenase, glutathione S-transferase, ATPase and membrane fluidity, PT and r could be sensitive biomarkers for assessing TBT toxicity at cellular level. The effective concentrations obtained by them were consistent to those obtained by the protozoan community toxicity test. As a result, the microcalorimetric assay of T. thermophila had a great potential in assessing TBT acute toxicity and monitoring TBT pollution in the freshwater ecosystem.

Restricted access

Abstract  

Two compounds of antimony trichloride and bismuth trichloride with valine are synthesized by solid phase synthesis at room temperature. Their compositions, determined by element analysis, are Sb(C5H10O2N)3·2H2O and Bi(C5H10O2N)2Cl·0.5H2O. The crystal structure of antimony complex with valine belongs to triclinic system and its lattice parameters are: a=0.9599 nm, b=1.5068 nm, c=1.9851 nm, α=92.270, β=95.050, γ=104.270. The crystal structure of bismuth complex with valine belongs to monoclinic system and its lattice parameters are: a=1.6012 nm, b=1.8941 nm, c=1.839 nm, β=99.73°. The far-infrared spectra and infrared spectra show that the amino group and carboxyl of valine may be coordinated to antimony and bismuth, respectively, in two compounds. The TG-DSC results also reveal that the complexes were formed.

Restricted access

Abstract  

New hexamethylenetetramine complexes of antimony and bismuth trichloride were synthesized through a solid phase reaction of hexamethylenetetramine and antimony or bismuth trichloride. The formula of the complex is MCl3(C6H12N4)2⋅H2O (M=Sb, Bi).The crystal structure of the complexes belongs to monoclinic system and the lattice parameters: a=1.249 nm, b=1.4583 nm, c=1.6780 nm andβ=91.78 for SbCl3(C6H12N4)2⋅H2O and a=1.3250 nm, b=1.3889 nm, c=1.7449 nm and β=98.94 for BiCl3(C6H12N4)2⋅H2O. Far-infrared spectra reveal that the antimony or bismuth ion is coordinated by the nitrogen atom of the hexamethylenetetramine. The thermal analysis also demonstrates the complex formation between the antimony or bismuth ion and hexamethylenetetramine. The intermediate and final residues in the thermal decomposition process have been analyzed to check the pyrolysis reaction.

Restricted access

This study aims to develop and validate a high-performance size-exclusion chromatography (HPSEC) method to determine the amount of polymer in cefmetazole sodium for injection and to compare this method with gel chromatography. A Zenix SEC-150 column was used with the mobile phase of phosphate buffer solution (pH 7.0; 0.01 M)—acetonitrile (90:10 v/v) at a flow rate of 0.8 mL min−1 and a detection wavelength of 240 nm. The polymer was quantified by an external standard method with self-control, and the amount was expressed by the percentage of cefmetazole. The HPSEC method was validated for specificity, linearity, and precision. The chromatographic conditions, chromatographic performances, sensitivity, linearity, and precision of the developed HPSEC method and gel chromatography were compared, and both methods were subsequently used to determine the amount of polymer from seven batches of samples. The HPSEC method was fully validated. The time of isocratic elution for sample assay was less than 14 min. The results of comparison indicate that the developed HPSEC method was superior to gel chromatography. The Student t test results also showed significant difference in the amount of polymer from the samples obtained by the two methods. Thus, the HPSEC method with two obvious advantages, the superior sensitivity and a shorter analysis time, is more suitable for determination of polymer amount in cefmetazole sodium for injection to control the quality of the product.

Open access

Abstract  

The aim of this paper is to consider using effective natural minerals in studying the retardation and migration of radium under the influence of groundwater in the far-field of a radioactive waste repository. The properties of adsorbing radium by minerals are studied by adopting the static and dynamic adsorption method. Preliminary experimental results give confidence in the validity of using Maifanshih and barite to adsorb radium in water and to serve as effective retarding materials in radioactive waste repositories, their Kd values being 3815 and 2955, respectively. The study on a certain number of conditions of adsorbing radium by the promissing material Maifanshih is reported for the first time. The mechanism of radium adsorption has been discussed and modeling of migration of radium in the minerals has been presented to establish a rational basis for the longterm prediction required for safety assessment of underground disposal of radioactive waste.

Restricted access

Summary

A rapid and sensitive method for the identification and quantification of yohimbine in Pausinystalia yohimbe is described. The method used is liquid chromatography-quadrupole ion trap mass spectrometry (LC-QIT/MS). The yohimbine standard solution was directly infused into the ion trap mass spectrometers (IT/MS) for collecting the MSn spectra. The major fragment ions of yohimbine were confirmed by MSn at m/z 355, 224, 212, and 144, in the positive-ion mode. The possible main fragment ion cleavage pathway was studied. Yohimbine provided good signals corresponding to the protonated molecular ion [M + H]+. The method is reliable and reproducible, and the detection limit is 0.1 ng mL-1. The method was validated in the concentration range 0.1–50 μg mL−1; the intra- and interday precision ranged from 1.36% to 2.73% and the accuracy was 96.5–108.2%. The mean recovery of yohimbine was 97.1–101% with a relative standard deviation (RSD) <1.93%. The LC-IT/MS method was successfully applied to determine the yohimbine in P. yohimbe.

Full access

Abstract

High-performance liquid chromatography with a hydrophilic-interaction liquid chromatographic (HILIC) column has been successfully used to retain and separate the polar phosphonic herbicides glyphosate and glufosinate. Online electrospray tandem ion-trap mass spectrometric and DAD detection were used. The effects on the separation of mobile phase acetonitrile content, buffer concentration, and flow rate, and of column temperature, were investigated. With UV-visible detection at 195 nm, LOQ were <850 mg kg−1, showing the method is suitable for product quality control of these herbicides alone or in combination. Tandem mass spectrometric conditions were optimized for ion-trap detection. Quantification was by use of selected reaction monitoring transitions m/z 168 → 150 in negative-ion mode for glyphosate and m/z 182 → 136 in positive-ion mode for glufosinate. Limits of detection (LOD; S/N > 3) were 0.20 and 0.16 ng for glyphosate and glufosinate, respectively, and the respective limits of quantification (LOQ; S/N = 10) were 0.02 and 0.05 mg kg−1. Sample derivatization was not necessary to achieve low detection limits in residue analysis in this study. Recovery from watermelon, spinach, potato, tomato, radish-root, and water fortified with the herbicides ranged from 63.6 to 107.3% and relative standard deviations were <15.3%.

Full access

An efficient and sensitive analytical method based on precolumn derivatization and gas chromatography—mass spectrometry—selected ion monitoring (GC—MS—SIM) was proposed and validated for analysis of two cembrenediols (CBDs) which are α-cembrenediol and β-cembrenediol in tobacco samples. CBDs in tobacco samples were extracted by sonication with 50 mL dichloromethane for 10 min before derivatized with 2:3 (v/v) bis(trimethylsilyl)trifluoroacetamide (BSTFA)—pyridine at 20 °C for 100 min. CBDs’ level in tobacco samples was analyzed by GC—MS—SIM and quantified by the internal standard method. The linear range for α-CBD and β-CBD was 13.6–554.6 μg mL−1 and 4.11–162.6 μg mL−1, and the correlation coefficients of both were 0.9998. The limit of detection (LOD) and limit of quantification (LOQ) of α-cembrenediol and β-cembrenediol were 0.40 μg g−1 and 1.34 μg g−1, and 0.27 μg g−1 and 0.90 μg g−1, respectively. Average recoveries of α-CBD and β-CBD were 94.4–99.9% and 91.9–98.2% while the relative standard deviations (RSDs, n = 5) were ranged from 2.67 to 5.6% and 2.04 to 4.22%, respectively. This proposed analytical method has been successfully applied to analyze CBDs in tobacco samples.

Open access

Abstract  

The iron contents in the hair and blood samples of 37 juvenile athletes who were supplemented with 0, 8 and 16 mg Fe/day, respectively, in the food of ferrous gluconatecontaining chocolate for 3 months were determined before and after the supplementation by INAA, SRXRF and blood analysis. The experimental results showed that after supplementation of the iron-fortified food, the normal ferritin level in the blood of the male athletes was attained and the iron content in the hair was increased with supplementation, but both are not in the positive proportion. Most of the female athletes had similar results. It is suggested that supplementation of 8 mg iron/day to juvenile athletes may be desirable.

Restricted access