Search Results
You are looking at 41 - 50 of 139 items for
- Author or Editor: Y. Chen x
- Refine by Access: All Content x
Abstract
A TiO2/monazite photocatalyst was prepared by embedding TiO2 nanoparticles into a monazite substrate surface. TiCl4 hydrolysis/citric acid chelating procedure under acidic conditions were used to synthesize the nanophase TiO2 particles. The anatase TiO2/monazite photocatalyst surface area, morphology, crystalline and elemental concentrations were characterized using Brunauer-Emmett-Teller (BET) method, scanning electron microscopy (SEM), X-ray diffraction (XRD), and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Monazite contains a large amount of Ce-, La-, Nd- and Th-PO4 compounds; it has been known as a natural mineral material with minor radioactivity. TiO2-CeO2 composite is a kind of radiation sensitive photocatalyst in which the radiations of thorium nuclides give energy to trigger TiO2 and cerium ions which play an energy absorber with charge separator. The result showed that methylene blue and phenol were spontaneously photocatalytic decomposed by TiO2/monazite composite even in a dark environment. A synergistic effect was also examined with applied exterior UV or 60Co irradiation. A hybrid mechanism is proposed; according by the radioluminescence (RL) from excited Ce ion by γ-radiation soliciting CeO2/TiO2 heterojunction (HJ). This seems to be a possible mechanism to explain this self-activated photo-catalytic behavior.
Abstract
A simple direct labeling method was used to synthesize the iodinated ultrafine polystyrene particles. The assay of X-ray photoelectron spectroscopy (XPS) as well as Fourier-transform infrared (FT-IR) spectroscopy indicated the formation of stable covalent bond to aryl group of the polymer particles. The purified radioiodinated product was incubated with serum of rat, and then evaluated by in vitro stability test. The result showed that these synthesized ultrafine polystyrene particles were unmetabolized at 2 hours post-exposure, indicating the potential useful application of this labeled polymer particles as a promising probe in biomedical sciences.
Abstract
The thiourea complexes of antimony and bismuth triiodide were synthesized by a direct reaction of antimony and bismuth triiodide with thiourea powder at room temperature. The formula of the complex is MI3[SC(NH2)2]3(M=Sb, Bi). The crystal structure of the complexes belongs to monoclinic system and the lattice parameters are a=1.4772 nm, b=1.6582 nm, c=2.0674 nm and β=90.81 for SbI3(SC(NH2)2)3 and a=1.4009 nm, b=2.0170 nm, c=2.0397 nm and β=90.84 for BiI3[SC(NH2)2]3. The infrared spectra reveal that the trivalent antimony or bismuth ion is coordinated by the nitrogen atom, not the sulfur atom of the thiourea. Thermal analysis shows that there are two times structure rearrangements or phase transformation in the complexes from 100 to 170C.
Abstract
New hexamethylenetetramine complexes of antimony and bismuth trichloride were synthesized through a solid phase reaction of hexamethylenetetramine and antimony or bismuth trichloride. The formula of the complex is MCl3(C6H12N4)2⋅H2O (M=Sb, Bi).The crystal structure of the complexes belongs to monoclinic system and the lattice parameters: a=1.249 nm, b=1.4583 nm, c=1.6780 nm andβ=91.78 for SbCl3(C6H12N4)2⋅H2O and a=1.3250 nm, b=1.3889 nm, c=1.7449 nm and β=98.94 for BiCl3(C6H12N4)2⋅H2O. Far-infrared spectra reveal that the antimony or bismuth ion is coordinated by the nitrogen atom of the hexamethylenetetramine. The thermal analysis also demonstrates the complex formation between the antimony or bismuth ion and hexamethylenetetramine. The intermediate and final residues in the thermal decomposition process have been analyzed to check the pyrolysis reaction.
Abstract
To obtain a biodegradable polymer material with satisfactory thermal properties, higher elongation and modulus of elasticity, a new copolyester, poly(hexylene terephthalate-co-lactide) (PHTL), was synthesized via direct polycondensation from terephthaloyl dichloride, 1,6-hexanediol and oligo(lactic acid). The resulting copolyesters were characterized by proton nuclear magnetic resonance (1H NMR), differential scanning calorimetry (DSC), thermogravimetry (TG) and wide-angle X-ray scattering (WAXS). By using the relative integral areas of the dyad peaks in 1H NMR spectrum of copolyesters PHTL, the sequence lengths of the hexylene terephthalate and lactide units in the resultant copolyesters are 3.5 and 1.5, respectively. Compared to poly(hexylene terephthalate) (PHT), PHTL has lower T m but higher T g due to the incorporation of lactide unit into the main chains of copolyesters. The degradation test of copolyesters under a physiological condition shows that the degradability of PHTL is sped up due to incorporation of lactide segments.
Influence of different maturity stages and treatments of ethephon, exogenous ABA, and fluridone on the ripening and hormone level of ‘Zhonghuashoutao’ peach during development and post-harvest storage were investigated. The accumulation of endogenous ABA appeared at the onset of ripening and peaked at two weeks before harvest. Fruit firmness decreased, while ethylene release and SSC/TA increased sharply after a maximum peak of ABA, which have triggered the initiation of the fruit ripening. The fruits, harvested at 170 d when fruits have ripened and stored at 20 °C, showed an ethylene climacteric peak, and the pulp started softening normally, and the SSC/TA value increased. Compared with them, the immature green fruits harvested at other dates, could not mature normally due to the lack of normal reciprocity between ABA and ethylene. The ethylene release was promoted by the treatment of exogenous ABA and ethephon during ripening until the endogenous ABA reached a maximum value. However, fluridone treatment showed an inhibitory effect. The above-mentioned changes occurred again in the peach fruits after harvest. The results indicated that both ABA and ethylene play important roles in peach ripening, and their action depended on the ripening stage of peach.
Bee pollen is a health food with a wide range of nutritional and therapeutic properties. However, the bioactive compounds of bee pollen have not been extensively revealed due to low efficacy in separation. High-speed counter-current chromatography (HSCCC) and solvent extraction were applied to separate tyrosinase inhibitors from camellia pollen in this study. The camellia pollen extracts prepared with petroleum ether, ethyl acetate, and n-BuOH have tyrosinase inhibitory activity. Acidic hydrolysis could promote the tyrosinase inhibitory activity of crude sample. Three fractions with tyrosinase inhibitory activity were separated from the hydrolysate by a one-step HSCCC procedure. Among the fractions, two chemicals were sufficiently purified and identified to be levulinic acid (LA) and 5-hydroxymethylfurfural (5-HMF). The recovery was 0.80 g kg−1 pollen for LA and 1.75 g kg−1 pollen for 5-HMF; and their purity was all over 98%. The study demonstrates that HSCCC method is powerful for preparative separation of tyrosinase inhibitors from camellia pollen.
Two hundred and ninety F9 recombinant inbred lines (RILs) derived from the bread wheat cultivar Gaocheng 8901 and the waxy wheat cultivar Nuomai 1 were used in determining the high-molecular-weight glutenin subunit (HMW-GS) and waxy protein subunit combinations and their effects on the dough quality and texture profile analysis (TPA) of cooked Chinese noodles. Seven alleles were detected at Glu-1 loci. There were two alleles found at each of the Wx-A1, Wx-B1 and Wx-D1 loci. Eight allelic combinations were observed for HMW-GS, LMW-GS and waxy proteins, respectively. Both the 1/7+8/5+10 and 1/7+8/5+12 combinations contributed to dough elasticity, and the 1/7+8/5+10 combination also provided better TPA characteristics. Compared to Wx protein, HMW-GS was more important on dough alveogram properties. LMW-GS significantly affected springiness and cohesiveness; HMW-GS mainly affected the hardness; Wx×LMW-GS significantly affected the springiness, cohesiveness and chewiness; HMW-GS×Wx×LMW-GS mainly influenced the springiness and chewiness. But HMW-GS×LMW-GS only affected the spinginess. These indicated the TPA of noodles was significantly affected by the interactions between glutenin and Wx proteins.
Abstract
This work is the first evaluation of environmental gamma exposure rates by the Nuclear Medicine Department at Lin Shin Hospital (LSH) in Taichung with Thermoluminescent dosimeter (TLD-100H) during the Fukushima Nuclear Power Plant (FNPP) accident. After the 9.0 MW strong earthquake hit northern Japan on March 11, 2011, a TLD-100H was used to monitor environmental kerma rate at Taichung (2,500 km away from northern Japan) from Mar-08 to Apr-09, 2011 and evaluated kerma rate due to global fallout of the sever FNPP accidents. Exposure rates varied widely among positions close to the PET/CT facility. Observed kerma rates of up to 4.12 ± 0.62 mSv mo−1 indicated an explicit, heavy leakage of photon through the PET/CT facility. No significant contributions were detected at Taichung, Taiwan. Hence, the health effect cause by the “extra radiation” from FNPP accidents is negligible. As this was a rare case of environmental monitoring during a nuclear power plant accident, its findings are of considerable significance.