Search Results

You are looking at 51 - 60 of 75 items for

  • Author or Editor: D. Wang x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Renal injury is reported to have a high mortality rate. Additionally, there are several limitations to current conventional treatments that are used to manage it. This study evaluated the protective effect of hesperidin against ischemia/reperfusion (I/R)-induced kidney injury in rats. Renal injury was induced by generating I/R in kidney tissues. Rats were then treated with hesperidin at a dose of 10 or 20 mg/kg intravenously 1 day after surgery for a period of 14 days. The effect of hesperidin on renal function, serum mediators of inflammation, and levels of oxidative stress in renal tissues were observed in rat kidney tissues after I/R-induced kidney injury. Moreover, protein expression and mRNA expression in kidney tissues were determined using Western blotting and RT-PCR. Hematoxylin and eosin (H&E) staining was done for histopathological observation of kidney tissues. The data suggest that the levels of blood urea nitrogen (BUN) and creatinine in the serum of hesperidin-treated rats were lower than in the I/R group. Treatment with hesperidin also ameliorated the altered level of inflammatory mediators and oxidative stress in I/R-induced renal-injured rats. The expression of p-IκBα, caspase-3, NF-κB p65, Toll-like receptor 4 (TLR-4) protein, TLR-4 mRNA, and inducible nitric oxide synthase (iNOS) was significantly reduced in the renal tissues of hesperidin-treated rats. Histopathological findings also revealed that treatment with hesperidin attenuated the renal injury in I/R kidney-injured rats. In conclusion, our results suggest that hesperidin protects against renal injury induced by I/R by involving TLR-4/NF-κB/iNOS signaling.

Restricted access
Acta Alimentaria
Authors:
Y.L. Xu
,
Y.D. Zhang
,
Z.P. Wang
,
W.W. Chen
,
C. Fan
,
J.Q. Xu
,
T. Wang
, and
S. Rong

Abstract

To explore the effect of sesamol on the cognition of APP/PS1 mice, 8-week-old APP/PS1 and wild-type male mice were divided into AD model group, AD + sesamol (50 mg kg−1 bw) group, and Control group. Sesamol was orally administered once a day for 5 months. Morris water maze was used to evaluate the learning and memory ability of mice. The number of synapses in the hippocampal neurons was detected by Golgi staining. Nissl staining was used to observe the changes of Nissl bodies in CA1 and CA3 regions of the hippocampus. Western blotting was used to detect the expression of Aβ, SIRT1, BDNF, and p-CREB/CREB in the hippocampus and cortex. Compared with the model group, sesamol decreased the latency period of APP/PS1 mice (P < 0.05) and increased the total number of neuronal dendritic spines in the hippocampal CA3 region, as well as increased the number of Nissl bodies (P < 0.05). Western blotting results showed that sesamol significantly reduced Aβ protein expression in the hippocampus and cortex, increased SIRT1 expression in the cortex, and increased BDNF expression in the hippocampus (P < 0.05). Sesamol improved the learning and memory abilities of APP/PS1 mice probably through increasing the density of neuronal dendritic spines and upregulating the levels of SIRT1 and BDNF.

Restricted access
Restricted access
Cereal Research Communications
Authors:
S. Wang
,
D. Chen
,
G. Guo
,
T. Zhang
,
S. Jiang
,
X. Shen
,
D. Perovic
,
S. Prodanovic
, and
Y. Yan

In this work, 9 novel LMW-GS genes (6 LMW-m and 3 LMW-i type) from 4 diploid and 1 tetraploid Aegilops species were amplified and cloned by allelic-specific PCR. Analysis of the deduced amino acid sequences showed that 7 and 2 LMW-GS had 9 and 7 cysteines, respectively. Four LMW-m type subunits genes had an extra cysteine at the C-terminal III, which could form intermolecular disulphide bonds to extend the chains, and therefore would facilitate to form larger gluten polymers. This suggested that these genes are expected to be used as candidate genes for wheat quality improvement. The correlation between specific N-terminal sequences and a decapeptide deletion in the C-terminal II in LMW-GS encoded by D genome was found. Particularly, if LMW-GS possessed a METRCIPG-N-terminal beginning sequences and a decapeptide (LGQCSFQQPQ) deletion in the C-terminal II, they could be encoded by D genome.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors:
D. Xu
,
Q. L. Ning
,
X. Zhou
,
C. L. Chen
,
X. L. Tan
,
A. D. Wu
, and
X. Wang

Summary  

Effects of ionic strength and of fulvic acid on the sorption of Eu(III) on alumina were investigated by using a batch technique. The experiments were carried out at T=25±1 °C, pH 4-6 and in the presence of 1M NaCl. The results indicate that sorption isotherms of Eu(III) are linear at low pH values. The sorption-desorption of Eu(III) on alumina at pH 4.4 is reversible, but a sorption-desorption hysteresis is found at pH 5.0. Fulvic acid has an obvious positive effect on the sorption of Eu(III) on alumina at low pH values. The migration of Eu(III) in alumina was studied by using column experiments and 152+154Eu(III) radiotracer at pH 3.8. For column experiments, Eu(III) sorbed on alumina can be desorbed completely from the solid surface at low pH values. The findings are relevant to the evaluation of lanthanide and actinide ions in the environment.

Restricted access
Cereal Research Communications
Authors:
N. Niu
,
Y.X. Bai
,
S. Liu
,
Q.D. Zhu
,
Y.L. Song
,
S.C. Ma
,
L.J. Ma
,
X.L. Wang
,
G.S. Zhang
, and
J.W. Wang

Studies of the pollen abortion mechanism in thermo-sensitive male sterile lines may provide a strong foundation for breeding hybrid wheat and establishing a theoretical basis for marker-assisted selection. To investigate the cause of pollen abortion in Bainong thermo – sensitive male sterile (BNS) lines, we analyzed the properties of pollen grains, changes in the tapetum and microspores in different anther developmental stages, and the distribution and deposition of nutrient substances in microspores. We found that tapetum degraded in the early uninucleate stage in sterile BNS (S-BNS), which was earlier than that of fertile BNS (F-BNS) tapetum. Large amounts of insoluble polysaccharides, lipids, and proteins were deposited until the trinucleate pollen stage in the nutritive cells in F-BNS. At the binucleate stage, the vacuoles disappeared and pollen inclusion increased gradually. At the trinucleate stage, these nutrients would help pollen grains mature and participate in fertilization normally. Therefore, early degradation of the tapetum, which inhibits normal microspore development, and the limited content of nutrient substances in pollen may be the main factors responsible for male sterility in BNS lines.

Restricted access
Cereal Research Communications
Authors:
Y.P. Jing
,
D.T. Liu
,
X.R. Yu
,
F. Xiong
,
D.L. Li
,
Y.K. Zheng
,
Y.F. Hao
,
Y.J. Gu
, and
Z. Wang

The objective of the present study was to understand the developmental regularity of wheat endosperm cells at different Days After Pollination (DAP) using microscopic and histochemical methods. Resin semi-thin sections of the endosperm and the enzymatically dissociated Starchy Endosperm Cells (SECs) were observed under a light microscope. The results showed that: (1) SECs were irregular-shaped and had two types of starch granules: large oval-shaped A-type starch granules and small spherical B-type starch granules. (2) The growth shape of SECs was referred to as S-curve and the fastest cell growth period was at 16–24 DAP. (3) The largest increase and growth of A-type starch granules were mainly at 4–16 DAP. B-type starch granules increased rapidly after 16 DAP and made up over 90% of the total starch granules in SEC during the late stage of endosperm development. (4) The nuclei of SEC deformed and degenerated during the middle and late stages of endosperm development and eventually disappeared. However, starch granules still increased and grew after the cell nuclei had degenerated. The investigations showed the development regularity of starch endosperm cells and starch granules, thereby improving the understanding of wheat endosperm development.

Restricted access

Senescence in a wheat (Triticum aestivum L.) leaf is a programmed degeneration process leading to death. During this process, green leaf area duration (GLAD) and green leaf number of main stem (GLNMS) are gradually reduced. In this study, the two traits of Hanxuan10/Lumai14 DH population at different development stages after anthesis were evaluated under rainfed and irrigated conditions, and QTLs were detected. GLAD and GLNMS of two parents and DH population under rainfed condition were less than those under irrigated condition, and close correlations (P < 0 05) were found between GLAD and GLNMS after 25 DAA under both water conditions. GLAD and GLNMS were co-controlled by major and minor genes. QTLs for GLAD were stably expressed at different development stages after anthesis under both water conditions, such as QGlad22-1B-1, QGlad25-1B-1, QGlad28-1B-2 detected under irrigated condition and QGlad25-1B-3, QGlad28-1B-4 mapped under rainfed condition were located at a 20.7 cM marker interval of Xgwm273-EST122 on 1B chromosome. But QTLs for GLNMS were inducibly and specifically expressed at specific developmental stages after anthesis under both water conditions. The findings provide dynamic genetic information related to wheat senescence.

Restricted access
Cereal Research Communications
Authors:
B.L. Béres
,
N.Z. Lupwayi
,
F.J. Larney
,
B. Ellert
,
E.G. Smith
,
T.K. Turkington
,
D. Pageau
,
K. Semagn
, and
Z. Wang

Research indicates that not all crops respond similarly to cropping diversity and the response of triticale (× Triticosecale ssp.) has not been documented. We investigated the effects of rotational diversity on cereals in cropping sequences with canola (Brassica napus L.), field pea (Pisum sativum L.), or an intercrop (triticale:field pea). Six crop rotations were established consisting of two, 2-yr low diversity rotations (LDR) (continuous triticale (T-T_LDR) and triticale-wheat (Triticum aestivum L.) (T-W_LDR)); three, 2-yr moderate diversity rotations (MDR) (triticale-field pea (T-P_MDR), triticale-canola (T-C_MDR), and a triticale: field pea intercrop (T- in P_MDR)); and one, 3-yr high diversity rotation (HDR) (canola-triticale-field pea (C-T-P_HDR)). The study was established in Lethbridge, Alberta (irrigated and rainfed); Swift Current (rainfed) and Canora (rainfed), Saskatchewan, Canada; and carried out from 2008 to 2014. Triticale grain yield for the 3-yr HDR was superior over the LDR rotations and the MDR triticale-field pea system; however, results were similar for triticale-canola, and removal of canola from the system caused a yield drag in triticale. Triticale biomass was superior for the 3-yr HDR. Moreover, along with improved triticale grain yield, the 3-yr HDR provided greater yield stability across environments. High rotational diversity (C-T-P_HDR) resulted in the highest soil microbial community and soil carbon concentration, whereas continuous triticale provided the lowest. Net economic returns were also superior for C-T-P_HDR ($670 ha–1) and the lowest for T-W_LDR ($458 ha–1). Overall, triticale responded positively to increased rotational diversity and displayed greater stability with the inclusion of field pea, leading to improved profitability and sustainability of the system.

Restricted access

This study was conducted to compare structural development and biochemical accumulation of waxy and non-waxy wheat (NW) caryopses. The caryopses’ microstructure of the waxy wheat (WW) and NW cultivars at different developmental stages were observed under light, fluorescence, and scanning electron microscope. The results were as follows: Compared with NW,WWhad a shorter maturation duration, which was reflected in several following characteristics. Programmed cell death of the pericarp began earlier, and the chlorophyll-containing layer in the pericarp was smaller. Vacuoles in chalazal cells accumulated more tannins at different developmental stages. Starch granules and protein bodies in the endosperm showed a higher accumulation level in developing caryopses, and aleurone cells were larger in size with larger numbers of aleurone grains. An analysis of the element content indicated that the mineral elements Mg, P, K, and Ca exhibited a higher content, while the heavy elements Cr, Cd, and Pb exhibited a lower content in the aleurone layer.

Restricted access