Search Results

You are looking at 51 - 60 of 104 items for

  • Author or Editor: J. Lee x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The Korea Atomic Energy Research Institute (KAERI) has launched a decommissioning program of the uranium conversion plant. The sludge waste, which was generated during the operation of the plant and stored in the lagoon, was characterized for the development of the treatment process. The physical properties were measured and chemical compositions and radiological properties analyzed. The main compounds of the sludge were ammonium nitrate, sodium nitrate, calcium nitrate, and calcium carbonate. All heavy radioactive elements such as uranium, thorium and 226Ra were precipitated and deposited at the bottom, and were not dissolved in the concentrated nitrate solution. A possible flow-scheme for processing is presented.

Restricted access

Summary  

The successful development of lithium-drifted Ge detectors in the 1960s marked the beginning of the significant use of semiconductor crystals for direct detection and spectroscopy of gamma-rays. In the 1970s, high-purity Ge became available, which enabled the production of complex detectors and multi-detector systems. In the following decades, the technology of semiconductor gamma-ray detectors continued to advance, with significant developments not only in Ge detectors but also in Si detectors and room-temperature compound-semiconductor detectors. In recent years, our group at Lawrence Berkeley National Laboratory has developed a variety of gamma-ray detectors based on these semiconductor materials. Examples include Ge strip detectors, lithium-drifted Si strip detectors, and coplanar-grid CdZnTe detectors. These advances provide new capabilities in the measurement of gamma-rays, such as the ability to perform imaging and the realization of highly compact spectroscopy systems.

Restricted access

Abstract  

Styrene is an important chemical in the petrochemical industry. In recent years, there have been sporadic releases, runaway reactions, fires, and thermal explosion accidents incurred by styrene and its derivatives worldwide. The purpose of this study was to estimate the impact of styrene and its derivatives of α-methylstyrene (AMS) and trans-β-methylstyrene (TBMS) contacting with benzaldehyde. Experiments were carried out to evaluate the thermokinetic parameters estimated by differential scanning calorimetry (DSC) and thermal activity monitor III (TAM III). TAM III was used to determine the fundamental thermokinetics under various isothermal temperatures, 80, 90 and 100°C. This autocatalytic reaction was demonstrated in thermal curves. After styrene was contacted with benzaldehyde, the exothermic onset temperature (T 0) and the total heat of reaction (Q total) were altered by DSC tests. When benzaldehyde is mixed with AMS and TBMS, the reaction time will be shorter but the enthalpy reduced, as revealed by TAM III tests. As AMS and TBMS, respectively, were contacted with benzaldehyde, both exothermic phenomena were changed during the reaction excursion. According to the results of this research, an operator should dictate the oxygen concentration in order to avoid any potential hazards during handling and transportation.

Restricted access

Abstract  

Flammable chemicals are frequently encountered in industrial processes. Under the safe operation basis and for fire/explosion danger prevention, it is imperative to recognize the flammability characteristics of these processes, especially under the working scenarios for elevated pressure and temperature. This study was conducted to investigate fire and explosion properties, including the explosion limits (LEL and UEL), maximum explosion overpressure (P max), maximum rate of explosion pressure rise (dP/dt)max, gas or vapor deflagration index (K g) and explosion class (St) of various acetone/water solutions (100, 75, 50 and 25 vol.%) at higher initial pressure/temperature up to 2 atm and 200°C via a 20-L-Apparatus. We further discussed the safety-related parameters and fire/explosion damage degree variations in the above aqueous acetone within 1 atm and 150°C. The results offered a successful solution for evaluating the flammability hazard effect in such a relevant crucial process with elevated pressure and temperature.

Restricted access

Abstract  

Preventing accidental explosions of flammable liquid/gas mixtures is very important. As far as flammability characteristics are concerned, we simulated the effects of inert liquid/gas, which was filled with reactors, vessels, or closed space, employed in the chemical process industries. The inert liquid/gas (H2O) weakened the oxygen concentration and reduced solvent vapor concentration in a 20-L-Apparatus. This study investigated the flammability characteristics of acetone/water solutions (100/0, 75/25, 50/50, and 25/75 vol.%) that are controlled at a temperature of 150°C and pressures of 101/202 kPa, respectively. The flammability parameters included flammability limits (LEL and UEL), maximum explosion pressure (P max), maximum explosion pressure rise ((dP dt −1)max), and vapor deflagration index (K g). The results of a series of experimental tests showed that UEL, P max, and K g all decreased with steam rising under the experimental conditions. The results can be applied to process safety design/operation for identifying whether the inert liquid/gas (H2O) content has any substantial effects in reducing the fire and explosion hazard of the solution of interest.

Restricted access

Abstract  

Organic peroxides are commonly employed as an initiator for polymerization, a source of free radicals, a hardener, and a linking agent. Due to its relatively weak oxygen-oxygen bond, di-tert butyl peroxide (DTBP) has been categorized as flammable type or Class III by the National Fire Protection Association (NFPA). The transport of dangerous goods (TDG) has published a warning against DTBP that it could potentially induce violent heat, explosion, fire and self-ignition under certain circumstances. DTBP has been recommended as an international standard sample for estimating the performance of several calorimeters, such as glass tube tests, differential scanning calorimetry (DSC), and vent sizing package 2 (VSP2). In this study, we measured the precise temperature changes and heat flow with the above-mentioned testing instruments. However, some runaway incidents caused by DTBP have demonstrated the reaction temperature could be as low as ambient temperature. The reactivity and the hazardous incompatibility with sulfuric acid (H2SO4) and hydrochloric acid (HCl) of DTBP have not been evident, and the runaway hazards involved in different processing conditions were clarified in this study by implementing the two calorimeters. Acid-catalyzed characteristics and reaction hazards of DTBP could be acquired, such as heat of decomposition (ΔH d) and exothermic onset temperature (T 0).

Restricted access

Abstract  

The distillation behaviour of cadmium at a reduced pressure was investigated to develop an actinide recovery process from a liquid cadmium cathode in a laboratory scale cadmium distiller. The apparent evaporation rate of cadmium increased with an increasing temperature whereas the rate decreased with an increasing vacuum pressure. The evaporation rate of cadmium varied within 9.7–40 g/cm2/h in the temperature range of 500–650 °C and pressure range of 0.5–10 Torr (0.0667–1.33 kPa). The theoretical values calculated by the Hertz–Langmuir relation were much higher than experimentally measured values. The deviation was compensated by an evaporation coefficient (α) obtained empirically. About 0.02–0.20 wt% of residue was left in the crucible after distillation and found to be CdO. It could be concluded that the temperature range of 500–650 °C is favourable for the cadmium distillation process if residual eutectic salt does not exist in the cadmium alloy surface.

Restricted access

Abstract  

It is important to increase a throughput of the salt removal process from uranium deposits which is generated on the solid cathode of electro-refiner in pyroprocess. In this study, it was proposed to increase the throughput of the salt removal process by the separation of the liquid salt prior to the distillation of the LiCl–KCl eutectic salt from the uranium deposits. The feasibility of liquid salt separation was examined by salt separation experiments on a stainless steel sieve. It was found that the amount of salt to be distilled could be reduced by the liquid salt separation prior to the salt distillation. The residual salt remained in the deposits after the liquid salt separation was successfully removed further by the vacuum distillation. It was concluded that the combination of a liquid salt separation and a vacuum distillation is an effective route for the achievement of a high throughput performance in the salt separation process.

Restricted access

Abstract  

In order to develop an 125I seed for brachytherapy of prostate cancer, a carrier body consisting of Al2O3 and silver powder was developed. To optimize the adsorption conditions of 125I on the rods, various experiments were performed. The adsorption capacity was more than 95% after 4 hours at a volume of 50 μl containing about 5 mCi of 125I. Dosimetric properties were measured for the radial and longitudinal directions. Variations were below 11% in the longitudinal distribution and 5% in the radial distribution. This method is effective for the preparation of 125I seeds to be used in brachytherapy treatment.

Restricted access

Abstract  

The extraction of Am(III) and Eu(III) using a γ-pre-irradiated N,N′-dimethyl-N,N′-dibutyltetradecyl malonamide (DMDBTDMA) modified with N,N′-dihexyloctanamide (DHOA) in n-dodecane (NDD) at 4.5M HNO3 has been studied as a function of the absorbed dose up to 2×106 Gray. The distribution ratios of Am(III) and Eu(III) were almost constant until a dose of 1×105 Gray and then they decreased gradually up to a dose of 2×106 Gray. The decrease of the distribution ratios of Am(III) and Eu(III) are due to the decreasing concentration of the DMDBTDMA by a γ-pre-irradiation and these results were supported by a determination of the DMDBTDMA concentration with a gas chromatography method. The distribution ratios of Am(III), Eu(III), Ce, Nd and Y with γ-pre-irradiated (DMDBTDMA-DHOA)/NDD have also been studied as a function of the nitric acid concentration and the extraction temperature.

Restricted access