Search Results

You are looking at 51 - 60 of 79 items for

  • Author or Editor: L. Santos x
  • Refine by Access: All Content x
Clear All Modify Search
Journal of Thermal Analysis and Calorimetry
Authors:
D. Brito
,
E. Silva
,
D. Rodrigues
,
M. Machado
,
M. Silva
,
V. Simões
,
M. Carvalho
,
L. Soledade
,
Iêda Santos
, and
A. Souza

Abstract  

A silico alumino phosphate with AFI structure (SAPO-5) was prepared in a two-phase medium and characterized by XRD, followed by the addition of TEA+. The kinetics of the TEA+/SAPO-5 thermal decomposition reaction was studied by isothermal and dynamic thermogravimetry. Two kinetic models, D3 and D4 based on diffusion processes were found as best to fit the isothermal data. On the other hand, the best fit for the dynamic data is the F1 first order reaction model. According to the apparent activation energy values, the use of the dynamic method indicates a higher temperature dependence than the isothermal method.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors:
Alexandre G. S. Prado
,
André L. F. Santos
,
Carolina P. Pedroso
,
Thiago O. Carvalho
,
Lilian R. Braga
, and
Sheila M. Evangelista

Abstract

Chitosan is a biodegradable natural polymer with great potential for pharmaceutical applications due to its biocompatibility, high charge density, and non-toxicity. In this study, chitosan microspheres were successfully prepared by an adapted method of coagulation/dispersion. The degree of deacetylation of chitosan powder was obtained by NMR 1H and FTIR techniques. Chitosan powder and chitosan microspheres were characterized by BET surface area and scanning electron microscopy (SEM). The interactions among the chitosan microspheres and the vitamins A and E were characterized by FTIR. In order to evaluate the ability of interaction of vitamin A and vitamin E with the chitosan microspheres, the thermodynamic parameters were followed by calorimetric titration. Different experimental approaches were applied, such as adsorption isotherms, kinetics and thermodynamics studies. The obtained results showed that the interactions of chitosan microspheres with the vitamins were spontaneous, enthalpically and entropically favorable, indicating that the chitosan microspheres can be used with success in the controlled release of these vitamins.

Restricted access

Biodiesels from beef tallow/soybean oil/babassu oil blends

Correlation between fluid dynamic properties and TMDSC data

Journal of Thermal Analysis and Calorimetry
Authors:
G. A. A. Teixeira
,
A. S. Maia
,
I. M. G. Santos
,
A. L. Souza
,
A. G. Souza
, and
N. Queiroz

Abstract

Cloud point (CP), cold filter plugging point (CFPP), and pour point (PP) of biodiesel samples obtained from blends containing different amounts of beef tallow, babassu oil, and soybean oil were investigated by the corresponding conventional techniques and by temperature modulated differential scanning calorimetry (TMDSC). The CP and CFPP values correlate well with the crystallization temperature (T onset) obtained from the TMDSC curves, being the highest for the biodiesel sample containing the highest amount of methyl stearate. A correspondence between PP and the peak temperature was also noticed, pointing out that pouring ceases after the crystallization of the heavier fatty acid ester. Among the samples of biodiesel, Bio-3 (highest amount of babassu oil) and Bio-4 (highest amount of soybean oil) showed better cold-flow properties, or in other words, lower values of CP, CFPP, and PP. Independently of the composition, the cold-flow properties of all biodiesel samples meet the requirements from the Brazilian National Agency of Petroleum, Natural Gas, and Biofuels (ANP).

Restricted access

Abstract

Biodiesel can be obtained from various fatty acid sources. Each raw material has a different chemical composition that leads to different properties. Owing to these properties, the mixture of different proportions of raw materials can lead to biodiesels with best features in relation to physicochemical parameters such as viscosity, oxidative stability and flow properties, generating a fuel whose characteristics meet the requirements of the current legislation of the Brazilian National Agency of Petroleum, Natural Gas and Biofuels (ANP). The objective of this study was to determine the physicochemical properties of biodiesel samples produced from mixtures of beef tallow, babassu oil, and soybean oil. The thermo-oxidative stability was evaluated using thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC). The results showed that all samples were in accordance to the ANP specifications. The biodiesel obtained from a mixture containing 50% of babassu oil had lower values of pour point, cold filter plugging point, and freezing point. This biodiesel also showed a higher thermo-oxidative stability in synthetic air and in oxygen atmospheres.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors:
E. F. S. M. Ramalho
,
I. M. G. Santos
,
A. S. Maia
,
A. L. Souza
, and
A. G. Souza

Abstract

Chemical composition of oils and fats used in the biodiesel synthesis can influence in processing and storage conditions, due to the presence of unsaturated fatty acids. An important point is the study of the biodiesel thermal stability to evaluate its quality using thermal analysis methods. In this study the thermal stabilities of the poultry fat and of their ethyl (BEF) and methyl (BMF) biodiesels were determined with the use of thermogravimetry (TG/DTG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC), in different atmospheres. The TG/DTG curves of the poultry fat in synthetic air presented three decomposition steps while only one step was observed in nitrogen (N2) atmosphere. The DSC results indicated four exothermic enthalpic transitions in synthetic air and an endothermic transitions in N2 atmosphere attributed to the combustion process and to the volatilization and/or decomposition of the fatty acids, respectively. For both biodiesels the TG/DTG curves in air indicated two mass loss steps. In the DSC curves four exothermic transitions were observed in synthetic air besides an endothermic one in N2 atmosphere.

Restricted access

Abstract

Biodiesel has the advantage of being renewable and clean and for these reasons has been studied recently both academically and in industry. Research in this area is focused on developing new synthetic routes to obtain a purer product or to find new alternative sources of food to replace conventional oils. Papaya biodiesel is obtained from oily residues with a fatty acid composition similar to olive oil. It is generally discarded by the ton, considering that Brazil is the world’s largest producer of papaya with an annual output of 1,811 million tons, productivity of 52 t/hectare and domestic consumption at 86.5%. This study was designed by means of thermal analysis (TG, DSC, P-DSC, and MT-DSC), to verify the possibility of achieving high quality biodiesel, with oxidative stability and flow properties previously indicated by composition analysis of its fatty esters, physical–chemical properties (including oxidative stability) using classical methodology, recommended by ASTM D 6756.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors:
J. Botelho
,
A. Souza
,
L. Nunes
,
A. Chagas
,
I. Garcia dos Santos
,
M. da Conceição
, and
P. Dunstan

Abstract  

The standard molar enthalpies of formation of crystalline dialkyldithiocarbamates chelates, [Pd(S2CNR2)2], with R=C2H5, n-C3H7, n-C4H9 and i-C4H9, were determined through reaction-solution calorimetry in acetone, at 298.15 K. From the standard molar enthalpies of formation of the gaseous chelates, the homolytic (172.43.8, 182.53.2,150.93.1 and 162.63.1 kJ mol−1) and heterolytic (745.03.8, 803.73.3,834.33.1 and 735.23.0 kJ mol−1) mean palladium-sulphur bond-dissociation enthalpies were calculated.

Restricted access
Restricted access
Journal of Thermal Analysis and Calorimetry
Authors:
G. C. A. Amaral
,
M. S. Crespi
,
C. A. Ribeiro
,
M. Y. Hikosaka
,
L. S. Guinesi
, and
A. F. Santos
Restricted access
Journal of Thermal Analysis and Calorimetry
Authors:
F. S. M. Sinfrônio
,
J. C. O. Santos
,
L. G. Pereira
,
A. G. Souza
,
M. M. Conceiçăo
,
V. J. Fernandes Jr.
, and
V. M. Fonseca
Restricted access