Search Results
You are looking at 51 - 60 of 76 items for
- Author or Editor: W. Liu x
- Refine by Access: All Content x
Higher plant population and nitrogen management is an adopted approach for improving crop productivity from limited land resources. Moreover, higher plant density and nitrogen regimes may increase the risk of stalk lodging, which is a consequence of complex interplant competition of individual organs. Here, we aimed to investigate the dynamic change in morphology, chemical compositions and lignin promoting enzymes of the second basal inter-nodes altering lodging risk controlled by planting density and nitrogen levels. A field trial was conducted at the Mengcheng research station (33°9′44″N, 116°32′56″E), Huaibei plain, Anhui province, China. A randomized complete block design was adopted, in which four plant densities, i.e., 180, 240, 300, and 360 × 104 ha−1 and four N levels, i.e., 0, 180, 240, and 300 kg ha−1 were studied. The two popular wheat varieties AnNong0711 and YanNong19 were cultivated. Results revealed that the culm lodging resistance (CLRI) index of the second basal internodes was positively and significantly correlated with light interception, lignin and cellulose content. The lignin and cellulose contents were significantly and positive correlated to light interception. The increased planting density and nitrogen levels declined the lignin and its related enzymes activities. The variety AnNong0711 showed more resistive response to lodging compared to YanNong19. Overall our study found that increased planting densities and nitrogen regimes resulted in poor physical strength and enzymatic activity which enhanced lodging risk in wheat varieties. The current study demonstrated that stem bending strength of the basal internode was significantly positive correlated to grains per spike. The thousand grain weight and grain yield had a positive and significant relationship with stem bending strength of the basal internode. The results suggested that the variety YanNong19 produces higher grain yield (9298 kg ha−1) at density 240 × 104 plants ha−1, and 180 kg ha−1 nitrogen, while AnNong0711 produced higher grain yield (10178.86 kg ha−1) at density 240 × 104 plants ha−1 and with 240 kg ha−1 nitrogen. Moreover, this combination of nitrogen and planting density enhanced the grain yield with better lodging resistance.
The forward and reverse cDNA subtractive libraries before and after the toxic effect of α-amanitin were constructed by suppression subtractive hybridization and randomly selected clones from each subtractive library were screened by PCR and dot blot hybridization. A total of 85 genes with altered expression were finally identified, with 41 genes from the forward library and 44 from the reverse library. Subsequently, the antagonistic effects of candidate traditional Chinese medicines were evaluated based on the genetic transcription levels of the genes with significant altered expression, including Catnβ, Flt3-L, IL-7r and Rpo2-4. The results indicated that Silybum marianum (L.) Gaert and Ganoderma lucidum had significant down-regulated effects on the transcription level of Catnβ that was up-regulated by α-amanitin, and the two herbs also up-regulated the transcription levels of Flt3-L and Rpo2-4. Silybum marianum (L.) had significant up-regulated effects on the IL-7r that was down-regulated by α-amanitin. These preliminary studies suggested that Silybum marianum (L.) and Ganoderma lucidum were effective antagonists against the toxicity of α-amanitin.
The aim of this study was to investigate the effects of maternal lead exposure on the learning and memory ability and expression of tau protein phosphorylation (P-tau) and beta amyloid protein (Aβ) in hippocampus of mice offspring. Pb exposure initiated from beginning of gestation to weaning. Pb acetate administered in drinking solutions was dissolved in distilled deionized water at the concentrations of 0.1%, 0.5% and 1% groups. On the 21 th of postnatal day, the learning and memory ability of the mouse pups was tested by Water Maze test and the Pb levels in blood and hippocampus of the offspring were also determined. The expression of P-tau and Aβ in hippocampus was measured by immunohistochemistry and Western blotting. The Pb levels in blood and hippocampus of all exposure groups were significantly higher than that of the control group ( P < 0.05). In Water Maze test, the performances of 0.5% and 1% groups were worse than that of the control group ( P < 0.05). The expression of P-tau and Aβ was increased in Pb exposed groups than that of the control group ( P < 0.05). Tau hyper-phosphorylation and Aβ increase in the hippocampus of pups may contribute to the impairment of learning and memory associated with maternal Pb exposure.
Aegiolops kotschyi cytoplasmic male sterile system often results in part of haploid plants in wheat (Triticum aestivum L.). To elucidate the origin of haploid, 235 wheat microsatellite (SSR) primers were randomly selected and screened for polymorphism between haploid (2n = 3x = 21 ABD) and its parents, male-sterile line YM21 (2n = 6x = 42 AABBDD) and male fertile restorer YM2 (2n = 6x = 42 AABBDD). About 200 SSR markers yielded clear bands from denatured PAGE, of which 180 markers have identifiable amplification patterns, and 20 markers (around 8%) resulted in different amplification products between the haploid and the restorer, YM2. There were no SSR markers that were found to be distinguishable between the haploid and the male sterile line YM21. In addition, different distribution of HMW-GS between endosperm and seedlings from the same seeds further confirmed that the haploid genomes were inherited from the maternal parent. After haploidization, 1.7% and 0.91% of total sites were up- and down-regulated exceeding twofold in the shoot and the root of haploid, respectively, and most of the differentially expressed loci were up/down-regulated about twofold. Out of the sensitive loci in haploid, 94 loci in the shoot, 72 loci in the root can be classified into three functional subdivisions: biological process, cellular component and molecular function, respectively.
Partial abortion of gametes possessing S-5 j in S-5 i / S-5 j genotype at locus S-5 is responsible for hybrid sterility between indica and japonica subspecies in rice ( Oryza sativa L.), while a single wide compatibility (WC) allele S-5 n can restore normal hybrid fertility between the two groups. In this study, Pei’ai 64S, one of the most popular WC line widely used for subspecific hybrid rice breeding program in South China was studied for location of its S-5 locus. Twenty SSR (Simple Sequence Repeat) markers derived from Cornell SSR linkage map and 9 developed using sequences from GenBank database were employed to perform bulked segregant analysis of the mapping population derived from a three-way cross (Pei’ai 64S/T8//Akihikari) to tag fine location of the hybrid sterility locus, S-5 . This S-5 locus was mapped on chromosome 6 approximately 0.2 cM from GXR6 and RM276 SSR markers. This tight linkage of the markers and the S-5 locus would be very useful for efficient marker-assisted selection for WC varieties and for map-based cloning of the gene.
The glutenin allele gene-pool, the distribution of the individual alleles on the 6 loci coding for glutenin subunits and their combinations were determined in a sample population containing 107 cultivars bred and grown in Martonvásár, Hungary at the Agricultural Research Institute of the Hungarian Academy of Sciences. The database is based on the results of three independent analytical procedures carried out using the traditional SDS-PAGE based allele identification, the state-of-art MALDI-TOF technology and the high throughput capillary electrophoresis based on the lab-on-a-chip technique. The usefulness of integrating the information on both HMW GS and LMW GS allelic composition for future genetic and technological improvement is discussed.
A comparative proteomic analysis of grain proteins during five grain developmental stages of wheat cultivar Chinese Spring (CS) and its 1Sl/1B substitution line CS-1Sl(1B) was carried out in the current study. A total of 78 differentially expressed protein (DEP) spots with at least 2-fold expression difference were detected by two-dimensional electrophoresis (2-DE). Among these, 73 protein spots representing 55 differentially expressed proteins (DEPs) were successfully identified by matrix-assisted laser desorption/ionization time-offlight tandem mass spectrometry (MALDI-TOF/TOF-MS). Differential protein spots between the two genotypes were analyzed by cluster software, which revealed significant proteome differences. There were 39 common spots (including 33 DEPs) that showed significant difference between the two lines across five grain developmental stages, of which 14 DEP spots (including 11 DEPs) were mainly involved in carbohydrate metabolism that were encoded by the genes on 1B chromosome while 25 DEP spots (including 12 DEPs) were mainly related to stress response and gluten quality that were encoded by 1S1 chromosome. These results indicated that the Sl genome harbors more stress and quality related genes that are potential valuable for improving wheat stress resistance and product quality.
Gliadin is a main component of gluten proteins that affect functional properties of bread making and contributes to the viscous nature of doughs. In this study, thirteen novel ω-gliadin genes were identified in several Triticum species, which encode the ARH-, ATDand ATN-type proteins. Two novel types of ω-gliadins: ATD- and ATN- have not yet been reported. The lengths of 13 sequences were ranged from 927 to 1269 bp and the deduced mature proteins were varied from 309 to 414 residues. All 13 genes were pseudogenes because of the presence of internal stop codons. The primary structure of these ω-gliadin genes included a signal peptide, a conserved N-terminal domain, a repetitive domain and a conserved C-terminus. In this paper, we first characterize ω-gliadin genes from T. timopheevi ssp. timopheevi and T. timopheevi ssp. araraticum. The ω-gliadin gene variation and the evolutionary relationship of ω-gliadin family genes were also discussed.
Red coleoptile is an easily observed trait in Triticum aestivum and can provide some protection against stress. Here, TaMYB-A1 or TuMYB-A1, homologous to TaMYB-D1, which controls red coleoptile formation in the common wheat cultivar ‘Gy115’, was isolated from eight T. aestivum and 34 T. urartu cultivars. The genome sequence of TaMYB-A1 was 867 bp with an intron of 93 bp, which was similar to the MYBs regulating anthocyanin biosynthesis in T. aestivum but different from other MYB transcription factors regulating anthocyanin biosynthesis. TaMYB-A1 had an integrated DNA-binding domain of 102 amino acids and a transcriptional domain of 42 amino acids, which was responsible for regulating anthocyanin biosynthesis. TaMYB-A1 was assigned to the same branch as the MYBs regulating anthocyanin biosynthesis in a phylogenetic tree. A transient expression analysis showed that TaMYB-A1 induced ‘Opata’ coleoptile cells to synthesize anthocyanin with the help of ZmR. A non-functional allele of TaMYB-a1 existed in common wheat cultivars containing rc-a1. One single nucleotide was deleted 715 bp after the start codon in TaMYB-a1 compared with TaMYB-A1. The deletion caused a frame shift mutation, destroyed the DNA transcription activator domain, and resulted in TaMYB-a1 losing its ability to regulate anthocyanin biosynthesis in ‘Opata’ coleoptile cells. Those cultivars with functional TaMYB-A1 or TuMYB-A1 have red coleoptiles. The isolation of TaMYB-A1 should aid in understanding the molecular mechanisms of coleoptile traits in T. aestivum.
Thinopyrum ponticum (2n = 10x = 70) has donated rust resistance genes to protect wheat from this fungal disease. In the present study, the line ES-7, derived from the progeny of the crosses between common wheat cultivar Abbondanza and Triticum aestivum–Th. ponticum partial amphiploid line Xiaoyan784, was characterized by cytological, fluorescence in situ hybridization (FISH), genomic in situ hybridization (GISH) and EST-STS marker techniques. Cytological observations revealed that the configuration of ES-7 was 2n = 42 = 21 II. GISH and FISH results showed that ES-7 had two St chromosomes and lacked 5A chromosomes compared to common wheat. The 4A chromosome of ES-7 had small alterations from common wheat. Two EST-SSR markers BE482522 and BG262826, specific to Th. ponticum and tetraploid Pseudoroegneria spicata (2n = 4x = 28), locate on the homoeologous group 5 chromosomes of wheat, could amplify polymorphic bands in ES-7. It was suggested that the introduced St chromosomes belonged to homoeologous group 5, that is, ES-7 was a 5St (5A) disomic substitution line. Furthermore, ES-7 showed highly resistance to mixed stripe rust races of CYR32 and CYR33 in adult stages, which was possibly inherited from Th. ponticum. Thus, ES-7 can be used for wheat stripe rust resistance breeding program.