Search Results
You are looking at 51 - 60 of 78 items for :
- Author or Editor: Y. Chen x
- Chemistry and Chemical Engineering x
- Refine by Access: All Content x
Abstract
Two compounds of antimony trichloride and bismuth trichloride with valine are synthesized by solid phase synthesis at room temperature. Their compositions, determined by element analysis, are Sb(C5H10O2N)3·2H2O and Bi(C5H10O2N)2Cl·0.5H2O. The crystal structure of antimony complex with valine belongs to triclinic system and its lattice parameters are: a=0.9599 nm, b=1.5068 nm, c=1.9851 nm, α=92.270, β=95.050, γ=104.270. The crystal structure of bismuth complex with valine belongs to monoclinic system and its lattice parameters are: a=1.6012 nm, b=1.8941 nm, c=1.839 nm, β=99.73°. The far-infrared spectra and infrared spectra show that the amino group and carboxyl of valine may be coordinated to antimony and bismuth, respectively, in two compounds. The TG-DSC results also reveal that the complexes were formed.
Abstract
The power-time curves of Tetrahymena thermophila exposed to tributyltin (TBT) were detected by microcalorimetry. Metabolic rate (r) decreased significantly while peak time (PT) increased with the enhancement of TBT level. Compared with the measured multibiomarker including catalase, lactate dehydrogenase, glutathione S-transferase, ATPase and membrane fluidity, PT and r could be sensitive biomarkers for assessing TBT toxicity at cellular level. The effective concentrations obtained by them were consistent to those obtained by the protozoan community toxicity test. As a result, the microcalorimetric assay of T. thermophila had a great potential in assessing TBT acute toxicity and monitoring TBT pollution in the freshwater ecosystem.
Summary
Electronic stopping power of 19F in Ni, Pd and Gd was measured and compared to Mstar and SRIM calculation as well as experimental results published in literature. It turns out that the present electronic stopping power agrees reasonably well with them.
Abstract
High-performance liquid chromatography with a hydrophilic-interaction liquid chromatographic (HILIC) column has been successfully used to retain and separate the polar phosphonic herbicides glyphosate and glufosinate. Online electrospray tandem ion-trap mass spectrometric and DAD detection were used. The effects on the separation of mobile phase acetonitrile content, buffer concentration, and flow rate, and of column temperature, were investigated. With UV-visible detection at 195 nm, LOQ were <850 mg kg−1, showing the method is suitable for product quality control of these herbicides alone or in combination. Tandem mass spectrometric conditions were optimized for ion-trap detection. Quantification was by use of selected reaction monitoring transitions m/z 168 → 150 in negative-ion mode for glyphosate and m/z 182 → 136 in positive-ion mode for glufosinate. Limits of detection (LOD; S/N > 3) were 0.20 and 0.16 ng for glyphosate and glufosinate, respectively, and the respective limits of quantification (LOQ; S/N = 10) were 0.02 and 0.05 mg kg−1. Sample derivatization was not necessary to achieve low detection limits in residue analysis in this study. Recovery from watermelon, spinach, potato, tomato, radish-root, and water fortified with the herbicides ranged from 63.6 to 107.3% and relative standard deviations were <15.3%.
Abstract
The heat capacities of LiNH2 and Li2MgN2H2 were measured by a modulated differential scanning calorimetry (MDSC) over the temperature range from 223 to 473 K for the first time. The value of heat capacity of LiNH2 is bigger than that of Li2MgN2H2 from 223 to 473 K. The thermodynamic parameters such as enthalpy (H–H 298.15) and entropy (S–S 298.15) versus 298.15 K were calculated based on the above heat capacities. The thermal stabilities of them were investigated by thermogravimetric analysis (TG) at a heating rate of 10 K min−1 with Ar gas flow rate of 30 mL min−1 from room temperature to 1,080 K. TG curves showed that the thermal decomposition of them occurred in two stages. The order of thermal stability of them is: Li2MgN2H2 > LiNH2. The results indicate that addition of Mg increases the thermal stability of Li–N–H system and decrease the value of heat capacities of Li–N–H system.
Abstract
Using isothermal microcalorimetry, the growth power-time curves of three strains of Tetrahymena were determined at 28C. Their Euclidean distances and cluster analysis diagram were obtained by using two thermokinetic parameters (r and Q log), which showed that T. thermophila BF1 and T. thermophila BF5 had a closer relationship. Compared with the single molecular biomarker (ITS1) method, microcalorimetry wasmaybe a simpler, more sensitive andmore economic technique in the phylogenetic studies of Tetrahymena species.
An efficient and sensitive analytical method based on precolumn derivatization and gas chromatography—mass spectrometry—selected ion monitoring (GC—MS—SIM) was proposed and validated for analysis of two cembrenediols (CBDs) which are α-cembrenediol and β-cembrenediol in tobacco samples. CBDs in tobacco samples were extracted by sonication with 50 mL dichloromethane for 10 min before derivatized with 2:3 (v/v) bis(trimethylsilyl)trifluoroacetamide (BSTFA)—pyridine at 20 °C for 100 min. CBDs’ level in tobacco samples was analyzed by GC—MS—SIM and quantified by the internal standard method. The linear range for α-CBD and β-CBD was 13.6–554.6 μg mL−1 and 4.11–162.6 μg mL−1, and the correlation coefficients of both were 0.9998. The limit of detection (LOD) and limit of quantification (LOQ) of α-cembrenediol and β-cembrenediol were 0.40 μg g−1 and 1.34 μg g−1, and 0.27 μg g−1 and 0.90 μg g−1, respectively. Average recoveries of α-CBD and β-CBD were 94.4–99.9% and 91.9–98.2% while the relative standard deviations (RSDs, n = 5) were ranged from 2.67 to 5.6% and 2.04 to 4.22%, respectively. This proposed analytical method has been successfully applied to analyze CBDs in tobacco samples.
Abstract
The characterization of different sized TiO2 (25 nm, 80 nm, and 155 nm) was carried out by transmission electron microscopy (TEM) and the micro-distributions of TiO2 in the olfactory bulb of mice after nasal inhalation were investigated by microbeam SRXRF mapping techniques. The results show that TiO2 particles can be translocated to the olfactory bulb through the olfactory nerve system after inhalation. The distributions of Fe, Cu, and Zn in the olfactory bulb were also studied.
Abstract
Excess molar enthalpies of binary mixtures for tributyl phosphate (TBP)+methanol/ethanol were measured with a TAM air Isothermal calorimeter at 298.15 K and ambient. The results for xTBP+(1–x)CH3OH are negative in the whole range of composition, while the values for xTBP+(1–x)C2H5OH change from positive values at low x to small negative values at high x. The experimental results have been correlated with the Redlich–Kister polynomial. IR spectra of the mixtures were measured to investigate the effect of hydrogen bonding in the mixture.