Search Results

You are looking at 51 - 59 of 59 items for

  • Author or Editor: Z. Yang x
  • Refine by Access: All Content x
Clear All Modify Search

Aegilops sharonensis (Sharon goatgrass) is a valuable source of novel high molecular weight glutenin subunits, resistance to wheat rust, powdery mildew, and insect pests. In this study, we successfully hybridized Ae. sharonensis as the pollen parent to common wheat and obtained backcross derivatives. F1 intergeneric hybrids were verified using morphological observation and cytological and molecular analyses. The phenotypes of the hybrid plants were intermediate between Ae. sharonensis and common wheat. Observations of mitosis in root tip cells and meiosis in pollen mother cells revealed that the F1 hybrids possessed 28 chromosomes. Chromosome pairing at metaphase I of the pollen mother cells in the F1 hybrid plants was low, and the meiotic configuration was 25.94 I + 1.03 II (rod). Two pairs of primers were screened out from 150 simple sequence repeat markers, and primer WMC634 was used to identified the presence of the genome of Ae. sharonensis. Sequencing results showed that the F1 hybrids contained the Ssh genome of Ae. sharonensis. The sodium dodecyl sulfate polyacrylamide gel electrophoresis profile showed that the alien high molecular weight glutenin subunits of Ae. sharonensis were transferred into the F1 and backcross derivatives. The new wheat-Ae. sharonensis derivatives that we have produced will be valuable for increasing resistance to various diseases of wheat and for improving the quality of bread wheat.

Restricted access

Abstract  

The constant-volume combustion energies of the lead salts of 2-hydroxy-3,5-dinitropyridine (2HDNPPb) and 4-hydroxy-3,5-dinitropyridine (4HDNPPb), ΔU c (2HDNPPb(s) and 4HDNPP(s)), were determined as –4441.922.43 and –4515.741.92 kJ mol–1 , respectively, at 298.15 K. Their standard enthalpies of combustion, Δc m H θ(2HDNPPb(s) and 4HDNPPb(s), 298.15 K), and standard enthalpies of formation, Δr m H θ(2HDNPPb(s) and 4HDNPPb(s), 298.15 K) were as –4425.812.43, –4499.631.92 kJ mol–1 and –870.432.76, –796.652.32 kJ mol–1 , respectively. As two combustion catalysts, 2HDNPPb and 4HDNPPb can enhance the burning rate and reduce the pressure exponent of RDX–CMDB propellant.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors:
L. Yang
,
Li Sun
,
Fen Xu
,
J. Zhang
,
J. Zhao
,
Z. Zhao
,
C. Song
,
R. Wu
, and
Riko Ozao

Abstract  

The microcalorimetric method has been used to study the effects of cefpiramide and ceftizoxime sodium on the E. coli growth. The results revealed that these two cephalosporins may alter the metabolic way of the E. coli. Moreover, the lethal doses of cefpiramide and ceftizoxime sodium are 2.000 and 0.2000 μg mL−1, respectively. Combining with the relationships between growth rate constant (k), the maximum power output (P m ), the time corresponding to the maximum power output (t m ) and cephalosporins concentration (C), one can draw the conclusion that the ceftizoxime sodium has a stronger inhibition effects on the growth of E. coli than that of cefpiramide and they both have the possibility to induce the drug fever.

Restricted access

Abstract

There have been contradicting observations regarding the prebiotic efficacy of feruloylated oligosaccharides (FOs) extracted from different varieties of cereals with varying oligosaccharides and ferulic acid (FA) levels. The present study was performed to determine whether the mass ratio of xylooligosaccharide (XOS) to FA influences their combined effects on faecal FA content, short chain fatty acid (SCFA) output, and gut stress of d-galactose-treated aging rats. The results show that there was no significant difference in the faecal FA levels of rats fed with 5:1 and 10:1 XOS:FA diet, although the FA level in the 5:1-supplemented diet was twice as much as in the 10:1 diet. More utilisation of FA decreased butyric acid and SCFA output in the faeces for diet 5:1 compared with diets 10:1 XOS:FA or XOS alone. Furthermore, compared with 10:1 XOS:FA or XOS alone treatments, the 5:1 XOS:FA diet resulted in increased 1-diphenyl-2-picrylhydrazyl activity and higher ratios of Bifidobacterium or Lactobacillus to Escherichia coli (P < 0.05), while not increasing the number of probiotic Bifidobacterium and Lactobacillus. These findings suggest that under the specific stress level set for this study, the sufficient amount of FA added to XOS (5:1) can stimulate FA utilisation to modify gut redox balance, while reducing faecal SCFA output.

Restricted access

Rht18, derived from Triticum durum (tetraploid) wheat, is classified as a gibberellic acid (GA)-responsive dwarfing gene. Prior to this study, the responses of Rht18 to exogenous GA on agronomic traits in hexaploid wheat were still unknown. The response of Rht18 to exogenous GA3 on coleoptile length, plant height, yield components and other agronomic traits were investigated using F4:5 and F5:6 hexaploid dwarf lines with Rht18 derived from two crosses between the tetraploid donor Icaro and tall Chinese winter wheat cultivars, Xifeng 20 and Jinmai 47. Applications of exogenous GA3 significantly increased coleoptile length in both lines and their tall parents. Plant height was significantly increased by 21.3 and 10.7% in the GA3-treated dwarf lines of Xifeng 20 and Jinmai 47, respectively. Compared to the untreated dwarf lines, the partitioning of dry matter to ears at anthesis was significantly decreased while the partitioning of dry matter to stems was significantly increased in the GA3-treated dwarf lines. There were no obvious changes in plant height and dry matter partitioning in the GA3-treated tall parents. Exogenous GA3 significantly decreased grain number spike–1 while it increased 1000-kernel weight in both the dwarf lines and tall parents. Thus, applications of exogenous GA3 restored plant height and other agronomic traits of Rht18 dwarf lines to the levels of the tall parents. This study indicated that Rht18 dwarf mutants are GA-deficient lines with impaired GA biosynthesis.

Restricted access

Bee pollen is a health food with a wide range of nutritional and therapeutic properties. However, the bioactive compounds of bee pollen have not been extensively revealed due to low efficacy in separation. High-speed counter-current chromatography (HSCCC) and solvent extraction were applied to separate tyrosinase inhibitors from camellia pollen in this study. The camellia pollen extracts prepared with petroleum ether, ethyl acetate, and n-BuOH have tyrosinase inhibitory activity. Acidic hydrolysis could promote the tyrosinase inhibitory activity of crude sample. Three fractions with tyrosinase inhibitory activity were separated from the hydrolysate by a one-step HSCCC procedure. Among the fractions, two chemicals were sufficiently purified and identified to be levulinic acid (LA) and 5-hydroxymethylfurfural (5-HMF). The recovery was 0.80 g kg−1 pollen for LA and 1.75 g kg−1 pollen for 5-HMF; and their purity was all over 98%. The study demonstrates that HSCCC method is powerful for preparative separation of tyrosinase inhibitors from camellia pollen.

Open access
Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors:
H. J. Ding
,
Y. N. Niu
,
Y. B. Xu
,
W. F. Yang
,
S. G. Yuan
,
Z. Qin
, and
X. H. Zhou

Summary  

The extraction of protactinium with Aliquat 336 (methyl-tri-caprylyl ammonium chloride) in toluene, cyclohexane and chloroform from HCl, HNO3, H2SO4, HClO4, HF and mixed HCl-HF media was investigated by radioactive tracer technique. Distribution ratios of protactinium between the aqueous solution and the organic phase were determined as a function of shaking time, concentrations of acid in aqueous solution phase, extractant concentration and type of diluents in the organic phase. Aliquat 336 can almost quantitatively extract protactinium from strong HCl solution. At the same time, small amounts of HF in HCl solutions have a strong effect on Pa distribution.

Restricted access
Cereal Research Communications
Authors:
H. Yu
,
Y. Yang
,
X.Y. Chen
,
G.X. Lin
,
J.Y. Sheng
,
J.Y. Nie
,
Q.J. Wang
,
E.J. Zhang
,
X.R. Yu
,
Z. Wang
, and
F. Xiong

The waxy wheat shows special starch quality due to high amylopectin content. However, little information is available concerning the development and degradation of amyloplast from waxy wheat endosperm. To address this problem, waxy wheat variety, Yangnuo 1, and a non-waxy wheat variety, Yangmai 13, were chosen to investigate the development and degradation of endosperm amyloplast during wheat caryopsis development and germination stage respectively using histochemical staining and light microscopy. Changes of morphology, the soluble sugar and total starch content were indistinguishable in the process of caryopsis development of two wheat varieties. The developing endosperm of non-waxy was stained blue-black by I2-KI while the endosperm of waxy wheat was stained reddish-brown, but the pericarp of waxy and non-waxy wheat was stained blue-black. In contrast to nonwaxy wheat, endosperm amyloplast of waxy wheat had better development status and higher proportion of small amyloplast. During seed germination many small dissolution pores appeared on the surface of endosperm amyloplast and the pores became bigger and deeper until amyloplast disintegrated. The rate of degradation of waxy wheat endosperm amyloplast was faster than non-waxy wheat. Our results may also be helpful to the use of waxy starch in food and nonfood industry.

Restricted access