Search Results
You are looking at 61 - 70 of 76 items for
- Author or Editor: W. Liu x
- Refine by Access: All Content x
The aphid Sitobion avenae F. is one of the most harmful pests of wheat growth in the world. A primary field screening test was carried out to evaluate the S. avenae resistance of 527 wheat landraces from Shaanxi. The results indicated that 25 accessions (4.74%) were resistant to S. avenae in the three consecutive seasons, of which accession S849 was highly resistant, and seven accessions were moderately resistant. The majority of S. avenae resistant accessions come from Qinling Mountains. Then, the genetic variability of a set of 33 accessions (25 S. avenae resistant and 8 S. avenae susceptible) originating from Qinling Mountains have been assessed by 20 morphological traits and 99 simple sequence repeat markers (SSRs). Morphological traits and SSRs displayed a high level of genetic diversity within 33 accessions. The clustering of the accessions based on morphological traits and SSR markers showed significant discrepancy according to the geographical distribution, resistance to S. avenae and species of accessions. The highly and moderately resistant landrace accessions were collected from the middle and the east part of Qinling Mountains with similar morphology characters, for example slender leaves with wax, lower leaf area, and high ear density. These S. avenae resistant landraces can be used in wheat aphid resistance breeding as valuable resources.
Waxy wheat (Triticum aestivum L.) is grown throughout the world for its specific quality. Fertilization and planting density are two crucial factors that affect waxy wheat yield and photosynthetic capacity. The objectives of the research were to determine the effects of fertilization and planting density on photosynthetic characteristics, yield, and yield components of waxy wheat, including Yield, SSR, TGW, GNPP, GWPP, PH, HI, Pn, Gs, Ci, E and WUE using the method of field experiment, in which there were three levels (150, 300, and 450 kg ha−1) of fertilizer application rate and three levels (1.35, 1.8, and 2.25 × 106 plants ha−1) of planting density. The results suggested that photosynthetic characteristics, yield, and yield components had close relationship with fertilization levels and planting density. Under the same plant density, with the increase of fertilization, Yield, SSR, TGW, GNPP, GWPP, HI, Pn, Gs, E and WUE increased and then decreased, PH increased, but Ci decreased. Under the same fertilization, with the increase of plant density, Yield, SSR, TGW, GNPP, GWPP, HI increased and then decreased, PH, Pn, Gs and E increased, PH and WUE declined. The results also showed that F2 (300 kg ha−1) and D2 (1.8 × 106 plants ha−1) was a better match in this experiment, which could obtain a higher grain yield 4961.61 kg ha−1. Consequently, this combination of fertilizer application rate and plant densities are useful to get high yield of waxy wheat.
Abstract
This work used a carrageenan-based thrombosis model to determine the preventative effects of Lactobacillus plantarum YS1 (LPYS1) on thrombus. In thrombotic mice, LPYS1 improved the activated partial thromboplastin time (APTT), while decreasing the thrombin time (TT), prothrombin time (PT), and fibrinogen (FIB) content. In thrombotic mouse serum, LPYS1 decreased the levels of malondialdehyde (MDA), tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), nuclear factor kappa-B (NF-κB), and interleukin-1 beta (IL-1β), while also increasing the activities of superoxide dismutase (SOD) and catalase (CAT). Moreover, LPYS1 upregulated the mRNA expression levels of copper/zinc-SOD (Cu/Zn-SOD), manganese-SOD (Mn-SOD), and CAT in the colon tissues of thrombotic mice, while downregulating those of NF-κB p65, IL-6, TNF-α, and interferon-gamma (IFN-γ) mRNA. In tail vein vascular tissues, LPYS1 suppressed the mRNA expression levels of NF-κB p65, intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. The abundances of both beneficial and pathogenic bacteria were altered by LPYS1. These findings show that LPYS1 has the capacity to protect mice from thrombosis, while also revealing some of the underlying mechanisms of this effect.
Summary
Radix Isatidis has widely useful activities including anti-virus, anti-bacterial. Tryptanthrin, indigo, and indirubin are active ingredients in R. Isatidis. Response surface methodology (RSM)-optimized infrared-assisted extraction (IRAE) was developed and combined with HPLC for simultaneous determination of tryptanthrin, indigo, and indirubin from R. Isatidis. IRAE were investigated through extraction yields of the three components and optimized by RSM. The optimum conditions were as follows: infrared power of 129 W, solid/liquid ratio of 1:40 g/mL, and irradiation time of 22.5 min. IRAE conditions obtained by RSM were not only accurate, but also had practical value reflecting the expected optimization. Subsequently, this novel IRAE method was evaluated by extraction yield of the components of R. Isatidis samples from different regions. Compared with common extraction methods including maceration extraction (ME), reflux extraction (RE), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE), IRAE showed higher yield with advantages of no limitation of solvent selection, low cost, convenience under optimum extraction conditions. These results suggested the potential of RSM-optimized IRAE for extraction and analysis of the water-/fat-soluble compositions of Chinese herbal medicine. A simple chromatographic separation for simultaneous determination of tryptanthrin, indigo, and indirubin from Chinese herbal medicine R. Isatidis was performed on a C18 column (Diamonsil 150 mm × 4.6 mm i.d., 5 μm) with a mobile phase isocratic consisting of methanol and water at a flow-rate of 0.8 mL min−1. The retention times of tryptanthrin, indigo, and indirubin were 15.4, 31.9, and 58.6 min, respectively. The linear equations were obtained as follows: y = −3094.5744 + 21208.792x for tryptanthrin (R = 0.9998, 0.9–18.0 μg mL−1), y = 4730.0448 + 30180.567x for indigo (R = 0.9997, 0.5–10.0 μg mL−1) and y = −6582.9045 + 67069.312x for indirubin (R = 0.9997, 0.4–8.0 μg mL−1). The result showed that RSM-optimized IRAE was a simple, efficient pretreatment method for the analysis of complex matrix.
Citri Grandis Exocarpium (CGE) is a traditional Chinese medicine with a variety of biological activities. For efficient quality control of CGE, a simple, rapid, and accurate high-performance liquid chromatographic (HPLC) method was developed for simultaneous determination of four main compounds (naringin, rhoifolin, meranzin hydrate, and isoimperatorin) in this herb. These four compounds were separated on a C18 column by gradient elution with methanol and water. The flow rate was 1.0 mL·min−1, and the detection wavelength was 324 nm. The recoveries of the method ranged from 96.32% to 103.71%, and good linear relationships (r 2 > 0.9998) over relative wide concentration ranges were obtained. Then this validated method was successfully applied to the analysis of nine batches of CGE samples.
Abstract
Nattokinase (NK) is effective in the prevention and treatment of cardiovascular disease. Cucumber is rich in nutrients with low sugar content and is safe for consumption. The aim of this study was to construct a therapeutic cucumber that can express NK, which can prevent and alleviate cardiovascular diseases by consumption. Because the Bitter fruit (Bt) gene contributes to bitter taste but has no obvious effect on the growth and development of cucumber, so the NK-producing cucumber was constructed by replacing the Bt gene with NK by using CRISPR/Cas9. The pZHY988-Cas9-sgRNA and pX6-LHA-U6-NK-T-RHA vectors were constructed and transformed into Agrobacterium tumefaciens EHA105, which was transformed into cucumber by floral dip method. The crude extract of NK-producing cucumber had significant thrombolytic activity in vitro. In addition, treatment with the crude extract significantly delayed thrombus tail appearance, and the thrombin time of mice was much longer than that of normal mice. The degrees of coagulation and blood viscosity as well as hemorheological properties improved significantly after crude extract treatment. These findings show that NK-producing cucumber can effectively alleviate thrombosis and improve blood biochemical parameters, providing a new direction for diet therapy against cardiovascular diseases.
A method was developed for the preparative separation of two alkaloids from the crude extract of the radix of Rauvolfia verticillata (Lour.) Baill. in a single run. The two-phase solvent system composed of petroleum ether–ethyl acetate–methanol–water (5:5:2:8, v/v), where triethylamine (40 mmol/L) was added to the upper organic phase as the stationary phase and hydrochloric acid (10 mmol/L) was added to the lower aqueous phase as the mobile phase, was selected for this separation by pH-zone-refining counter-current chromatography (PZRCCC). For the preparative separation, the apparatus was rotated at a speed 850 rpm, while the mobile phase was pumped into the column at 2 mL/min. As a result, 112 mg of reserpine and 21 mg of yohimbine were obtained from 3 g of crude extract in a single run. The analysis of the isolated compounds was determined by high-performance liquid chromatography (HPLC) at 230 nm with purities of over 91.0%, and the chemical identification was carried out by the data of electrospray ionization–mass spectrometry (ESI–MS) and nuclear magnetic resonance (NMR) spectroscopy. The technique introduced in this paper is an efficient method for preparative separation of reserpine and yohimbine from devil pepper radix. It will be beneficial to utilize medicinal materials and also useful for the separation, purification, and pharmacological study of Chinese herbal ingredients.
Patrinia scabra Bunge has long been used in clinic as a traditional Chinese medicine for treating leukemia and cancer and regulating host immune response. Despite their wide use in China, no report on system analysis on their chemical constituents is available so far. The current study was designed to profile the fingerprint of ethyl acetate extract of it, and in addition, to characterize the major fingerprint peaks and determine their quantity. Therefore, a detailed gradient high-performance liquid chromatography was described to separate more than 30 compounds with satisfactory resolution in P. scabra Bunge. Based on the chromatograms of 10 batches samples, a typical high-performance liquid chromatographic (HPLC) fingerprint was established with 23 chromatographic peaks being assigned as common fingerprint peaks. Furthermore, a quadrupole time of flight mass spectrometry (Q-TOF/MS) was coupled for the characterization of major compound. As (+)-nortrachelogenin was the most predominant compound in P. scabra Bunge, the quantification on it was also carried out with the method being validated. As a result, (+)-nortrachelogenin was found to be from 1.33 to 2.21 mg g−1 in this plant material. This rapid and effective analytical method could be employed for quality assessment of P. scabra Bunge, as well as pharmaceutical products containing this herbal material.
Abstract
The occupational health impact of atmospheric pollution on exposed workers at one iron and steel complex was studied by instrumental neutron activation analysis of workers' hair samples and medical examination. The experimental results indicate that there is a positive correlation between the high inhalation amounts of iron and other trace elements by the exposed workers and the symptom of their high blood pressure and hypoglycemia, which implies that the atmospheric environment polluted by iron and steel industry has an adverse health impact on the exposed workers. The measures to relieve and abate the occupational diseases caused by air-borne particulate matter should be taken
Abstract
In this study, the stepwise isothermal crystallization or thermal fractionation of Ziegler—Natta and metallocene based polyethylenes (ZN-PE and m-PE) with two kinds of branch lengths (ethyl and hexyl) and branch compositions were studied using simultaneous synchrotron small-angle X-ray scattering (SAXS)/wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC). The crystal long period and the invariant were determined by SAXS, and the variations of crystal unit cell parameters and the degree of crystallinity were determined by WAXD. The arithmetic mean length (Ln), the weightedmean length (Lw) and the broadness index (Lw/Ln) of the studied polyethylenes were previously determined by DSC. Results from these studies were interpreted using the model of branch exclusion, which affects the ability of the chain-reentry into the crystal phase. Multiple SAXS peaks and step-change in crystallinity change (WAXD) were seen during heating, which corresponded well with the crystal thickness distribution induced by stepwise crystallization. The effects of the heterogeneity of the 1-olefin branch length and the distribution on the crystal long period and the invariant as well as the degree of crystallinity were discussed.