Search Results

You are looking at 71 - 80 of 87 items for :

  • Author or Editor: J. Hoste x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The paper describes the collection and preparation of a second generation biological reference material (human blood serum) with trace element levels closely approximating those in real human blood plasma or serum samples.

Restricted access

Abstract  

The116Sn (n, γ)117mSn reaction commonly used in reactor-neutron activation analysis (RNAA) turned out to be seriously interfered by the117Sn (n, n′)117mSn reaction, as observed from irradiation in channels with largely different neutron thermalization. To estimate the magnitude of this primary interference an attempt was made to determine the relevant fission neutron averaged cross-section, yielding approximately σn, n, (117Sn)==0.09±0.01 barn. This value—believed to be the first measured and published—is remarkably high especially when compared to the 2200 m·s−1 cross-section σo[116Sn(n, γ)117mSn]=0.006 barn.

Restricted access

Abstract  

Recommended k0-factors and related nuclear data for use in (n, ) activation analysis are given for 72 isotopes. In addition the basic nuclear constants and experimental parameters needed in the k0 standardization method are reviewed. For convenient data reduction, computer programs were developed.

Restricted access

Abstract  

A description is given of the systematic errors which can be introduced when applying absolute or comparator standardization techniques to RNAA or ENAA at irradiation sites with a deviating 1/E1+α epithermal neutron flux distribution. A simple correction formula for a≠0 is presented and a survey is given of the present state-of-the-art for experimentala-monitoring and for the calculation or experimental determination of the effective resonance energy Ēr. Extensive error calculation leads to the conclusion that, with careful selection ofa monitors and of the nuclear data involved, the rather large errors (∼10% or more) are reduced, after correction fora, to uncertainties of about 2%.

Restricted access

Abstract  

ko-factors of 35 isotopes used in reactor neutron activation analysis were measured with a high degree of accuracy (1–2%). To minimize systematic errors, measurements were carried out using different reactor types, irradiation conditions (18 < Φse), Ge(Li) detectors, sample detector geometry, etc. Analyst-oriented tabulations including all necessary nuclear data, “best values”, as well as recommended ko-values are given to facilitate analytical work with the new method. Some practical aspects as well as limitations of the ko-method are also outlined together with the applied neutron flux and cross-section conventions.

Restricted access

Abstract  

Some methods for the experimental α-determination in the 1/E1+α epithermal reactorneutron spetrum are critically compared with respect to their accuracy and precision. The analysis is based on the error propagation theory. Besides the general formulae numerical examples are elaborated for specific conditions in the Thetis reactor (Gent) and the WWR-M reactor (Budapest).

Restricted access

Abstract  

The induced activity of the99Mo isotope is mostly determined via the 140.5 keV γ-line, which is the strongest gamma-ray of its daughter,99mTc. Some recent literature, however, indicates a direct feeding of this energy level from the mother isotope as well. Considering the importance of this line in practice as well as the large controversy and scattering in relevant nuclear data available at present, a combined effort was made to remeasure this questionable absolute intensity. A relative method of irradiating a Mo-target with reactor neutrons and repeatedly measuring its (n,γ) induced activity relative to the 181.1 keV and 739.5 keV gamma lines of99Mo as internal references was used. The weighted average of different runs yielded γ(99Mo, 140.5 keV)=(5.07±0.37)%. As a consequence, when the 140.5 keV gamma line is used, the contribution from the99Mo mother isotope should always be taken into account, e.g. in neutron cross-section measurements and neutron activation analysis.

Restricted access

Abstract  

The applicability of the k0 standardization concept in ENAA has been investigated by comparing for 32 isotopes the experimentally determined ke, 0-values with those calculated from well-known k0 and Q0=l00 factors. It is concluded that the k-comparator method can be extended and applied in general to epicadmium (n, γ) activation analysis. Attention is also paid to some specific problems, such as the deviation from the ideal epithermal neutron flux distribution, the uncertainty in the effective Cd cut-off energy for the Cd-covers used, and the cadmium epithermal neutron transmission factor for which a literature survey is presented.

Restricted access