Search Results
You are looking at 71 - 80 of 112 items for
- Author or Editor: S. Li x
- Refine by Access: All Content x
Abstract
The acidity of mesoporous materials FeSiMCM-41, LaSiMCM-41, SiMCM-41, AlSiMCM-41 and HAlSiMCM-41 has been investigated by microcalorimetric studies of the adsorption of ammonia and temperature programmed ammonia desorption method. In the initial stage, the acid strength sequence is SiMCM-41>HAlSiMCM-41>AlSiMCM-41>FeSiMCM-41>LaSiMCM-41, in agreement with that found for microporous molecular sieves materials. A small number of strong acid sites of SiMCM-41 may result from the aluminum impurity contained in the silica source material. The acid density sequence is HAlSiMCM-41>AlSiMCM-41>FeSiMCM-41>LaSiMCM-41SiMCM-41 and can be explained by the studies of existing states of trivalent atoms in these samples reported in previous work. Since some NH3-TPD plots of these samples show the profiles that could not be back to baseline at elevated temperature, the technique of microcalorimetric adsorption is preferable in studying these samples.
Abstract
After the occurrence of 'Minamata disease' in 1950, mercury aroused much more attention, and lots of studies concerned have been made. The purpose of the present paper is to study the effect of mercuric chloride on the mitochondria suspension isolated from the liver tissue of Cyprinus carpio from the direct viewpoint of energy by using the microcalorimetric method. The metabolic thermogenic curves of the mitochondria suspension at 25C were obtained, and the mitochondria metabolic thermokinetic equations were established, from which we obtained the thermodynamic and thermokinetic parameters: thermogenic rate constant (k), heat output (Q), average heat power (P av), etc. Experimental results indicated that low concentration of mercuric chloride (5 nmol Hg2+/(mg protein)) stimulates the thermogenesis of mitochondria, suggesting a strong effect of uncoupling action, while high concentration of mercuric chloride (20 nmol Hg2+/(mg protein)) inhibits the metabolism of mitochondria completely, suggesting a fatal effect on the phosphorylation system. The effect of Hg2+ on mitochondria is concentration-depended, from which the probable reaction mechanism of Hg2+ to the mitochondria was proposed. So the microcalorimetric method can be used in the toxicology research.
Abstract
The heat capacities of trans-(R)-3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropanecarboxylic acid in the temperature range from 78 to 389 K were measured with a precise automatic adiabatic calorimeter. The sample was prepared with the purity of 0.9874 mole fraction. A solid-liquid fusion phase transition was observed in the experimental temperature range. The melting point, T m, enthalpy and entropy of fusion, Δfus H m, Δfus S m, were determined to be 344.75±0.02 K, 13.75±0.07 kJ mol−1, 39.88±0.21 J K−1 mol−1, respectively. The thermodynamic functions of the sample, H (T)-H (298.15), S (T)-S (298.15) and G (T)-G (298.15), were reported with a temperature interval of 5 K. The thermal decomposition of the sample was studied by TG analysis, the thermal decomposition starts at ca. 421 K and terminates at ca. 535 K, the maximum decomposition rate was obtained at 525 K. The order of reaction, pre-exponential factor and activation energy, are n=0.14, A=1.15·108 min−1, E=66.27 kJ mol−1, respectively.
Abstract
The low-temperature heat capacities of 1-hexadecanol have been measured with an automatic adiabatic calorimeter over the temperature range from 80 to 370 K. A solid-liquid phase transition was observed at T m=322.225±0.002 K and the molar enthalpy and entropy of fusion were determined to be 57.743±0.008 kJ mol−1 and 179.19±0.04 J K−1 mol−1, respectively. The purity, the real melting point (T 1) and the ideal melting point without any impurity or absolutely purity (T 0) of the sample under investigation were determined to be 99.162 mol%, 322.21 and 322.34 K, respectively, by fractional melting method. According to the polynomial equation of heat capacity and thermodynamic relationship, the thermodynamic functions of the compound relative to the reference temperature 298.15 K were calculated in the temperature ranges of 80 to 370 K with an interval of 5 K. In addition, further researches of thermal properties for this compound were carried out by means of TG/DTG.
Abstract
The copper(II) complex of 6-benzylaminopurine (6-BAP) has been prepared with dihydrated cupric chloride and 6-benzylaminopurine. Infrared spectrum and thermal stabilities of the solid complex have been discussed. The constant-volume combustion energy, Δc U, has been determined as −12566.92±6.44 kJ mol−1 by a precise rotating-bomb calorimeter at 298.15 K. From the results and other auxiliary quantities, the standard molar enthalpy of combustion, Δc H m θ, and the standard molar of formation of the complex, Δf H m θ, were calculated as −12558.24±6.44 and −842.50±6.47 kJ mol−1, respectively.
Abstract
To provide a convenient and facile method to evaluate the radiochemical purity (RCP) of 99mTc-TRODAT-1 in quality control of routine clinical application, a simplified method of single-strip thin layer chromatography (TLC) was developed and validated by high performance liquid chromatography (HPLC). The RCP data of TLC correlated well with HPLC.
Abstract
The sorption/desorption of radioruthenium was investigated by the batch method in sea water system at ambient temperature on the surface sediments obtained around the Daya Bay of Guangdong Province, where the first nuclear power station of China has been running from 1994. It was found that the sorption percentage was obtained to be around 40% for all the surface sediments in 60 minutes. Then, the sorption percentage goes up slowly. The sorption percentage of radioruthenium reached around 80% in 113 days (2713 hours). The distribution coefficients decreased from 3.16·104 to 1.35·103 ml/g with the increasing of sediment concentration in the range of 4–10000 mg/l. The results of the desorption experiments suggest that the sorption of radioruthenium is irreversible with 81.5% relative hysteresis coefficient.
Abstract
Three kinds of marine bivalves (wild Saccostrea cucullata, aquacultured Perna viridis and aquacultured Pinctada martens), collected from Daya Bay, the South China Sea, were used to investigate the bio-accumulation of radioruthenium in the glass aquarium with natural seawater (pH 8.20, 35‰ salinity, filtered by 0.45 μm) at ambient temperature under laboratory feeding conditions. The experimental results show that the stead-state of biology concentration factor (BCF, ml/g) of radioruthenium was approached around 6 days for most species of bivalves. The values of BCF in shells are the highest in organs all the three bivalves. The orders of BCF values (ml·g−1) are as: Perna viridis (33.2) < Saccostrea cucullata (47.0) < Pinctada martensi (208.4) for shells and Saccostrea cucullata (1.5) < Pinctada martensi (2.2) ≈ Perma viridis (2.4) for soft tissues, respectively, after exposed for 14 days. The rate constants of uptake and elimination of radioruthenium on marine bivalves were also discussed by first-order kinetics model. The Pinctada martensi may be applicable to be an indicator for monitoring radioruthenium among the three bivalves.
Recently, super rice has gained much importance due to its high yield potential while exogenous application of plant growth regulators (PGRs) is an important aspect in plant development and defense responses under stress conditions. In this study we conducted two pot experiments. Firstly, four super rice cultivars, viz. Peizataifeng, Huayou 213, Yuxiangyouzhan and Huahang 31 were subjected to a series of five chilling temperatures, i.e. 11 °C, 12 °C, 13 °C, 14 °C and 15 °C (day/night) for about 25–27 days. Secondly, seeds of Peizataifeng (super rice) and Yuejingsimiao 2 (non-super rice) were then treated with different combinations of salicylic acid (SA), brassinolide (BR), calcium chloride (CaCl2) and fulvic acid (FA) and then exposed to chilling stress at 13 °C for four days. Resultantly, Peizataifen (super rice) was found with the lowest seedling survival rate at all chilling temperatures among all four super rice cultivars, however, it was still found more resistant when compared with Yuejingsimiao 2 (non-super rice) in the second experiment. Furthermore synergistic effect of all PGRs alleviated low temperature stress in both rice cultivars by improving seedling survival rates, leaf area, seedling dry weight, seedling height, root morphology and by modulating antioxidant enzymes, improving proline content and lowering lipid peroxidation.
Abstract
The thermal mechanical properties and degradation behaviors were studied on fibers prepared from two high-performance, heterocyclic polymers, poly(p-phenylenebenzobisthiazole) (PBZT) and poly(p-phenylenebenzobisoxazole) (PBZO). Our research demonstrated that these two fibers exhibited excellent mechanical properties and outstanding thermal and thermo-oxidative stability. Their long-term mechanical tensile performance at high temperatures was found to be critically associated with the stability of the C—O or C—S linkage at the heterocyclic rings on these polymers' backbones. PBZO fibers with the C—O linkages displayed substantially higher thermal stability compared to PBZT containing C—S linkages. High resolution pyrolysis-gas chromatography/mass spectrometry provided the information of the pyrolyzates' compositions and distributions as well as their relationships with the structures of PBZT and PBZO. Based on the analysis of the compositions and distributions of all pyrolyzates at different temperatures, it was found that the thermal degradation mechanisms for both of these heterocyclic polymers were identical. Kevlar®-49 fibers were also studied under the same experimental conditions in order to make a comparison of thermo-oxidative stability and long-term mechanical performance at high temperatures with PBZO and PBZT fibers. The data of two high-performance aromatic polyimide fibers were also included as references.